Finite-size effects in the Nagel-Schreckenberg traffic model

被引:4
|
作者
Balouchi, Ashkan [1 ]
Browne, Dana A. [1 ]
机构
[1] Louisiana State Univ, Dept Phys & Astron, Baton Rouge, LA 70803 USA
关键词
CRITICAL-BEHAVIOR; CELLULAR-AUTOMATA; DISTANCE-HEADWAYS; FLOW; DISTRIBUTIONS; DENSITY; PHYSICS;
D O I
10.1103/PhysRevE.93.052302
中图分类号
O35 [流体力学]; O53 [等离子体物理学];
学科分类号
070204 ; 080103 ; 080704 ;
摘要
We examine the Nagel-Schreckenberg traffic model for a variety of maximum speeds. We show that the low-density limit can be described as a dilute gas of vehicles with a repulsive core. At the transition to jamming, we observe finite-size effects in a variety of quantities describing the flow and the density correlations, but only if the maximum speed V-max is larger than a certain value. A finite-size scaling analysis of several order parameters shows universal behavior, with scaling exponents that depend on Vmax. The jamming transition at large Vmax can be viewed as the nucleation of jams in a background of freely flowing vehicles. For small Vmax no such clean separation into jammed and free vehicles is possible.
引用
收藏
页数:12
相关论文
共 50 条
  • [41] Finite-size phase diagram of the Wako-Saito-Munoz-Eaton α-helix model
    Lee, Julian
    JOURNAL OF THE KOREAN PHYSICAL SOCIETY, 2015, 67 (07) : 1187 - 1191
  • [42] A generic mechanism for finite-size coherent particle structures
    Romano, Francesco
    Wu, Haotian
    Kuhlmann, Hendrik C.
    INTERNATIONAL JOURNAL OF MULTIPHASE FLOW, 2019, 111 : 42 - 52
  • [43] Collective light emission of a finite-size atomic chain
    Zoubi, Hashem
    EPL, 2012, 100 (02)
  • [44] Finite-size correction to the pionium lifetime due to ω and η′ contributions
    Chliapnikov, P. V.
    Ronjin, V. M.
    JOURNAL OF PHYSICS G-NUCLEAR AND PARTICLE PHYSICS, 2009, 36 (10)
  • [45] Anomalous finite-size effect on the magnetostructural transition in CrN
    Wang, Lingfei
    Xu, Wenwen
    Zhou, Xuefeng
    Gu, Chao
    Cheng, Hu
    Chen, Jian
    Wu, Liusuo
    Zhu, Jinlong
    Zhao, Yusheng
    Guo, Er-Jia
    Wang, Shanmin
    PHYSICAL REVIEW B, 2023, 107 (17)
  • [46] Finite-size corrections at the hard edge for the Laguerre β ensemble
    Forrester, Peter J.
    Trinh, Allan K.
    STUDIES IN APPLIED MATHEMATICS, 2019, 143 (03) : 315 - 336
  • [47] Multifractal finite-size scaling and universality at the Anderson transition
    Rodriguez, Alberto
    Vasquez, Louella J.
    Slevin, Keith
    Roemer, Rudolf A.
    PHYSICAL REVIEW B, 2011, 84 (13):
  • [48] Finite-size anisotropy in statistically uniform porous media
    Koza, Zbigniew
    Matyka, Maciej
    Khalili, Arzhang
    PHYSICAL REVIEW E, 2009, 79 (06)
  • [49] Finite-size effects in film geometry with nonperiodic boundary conditions: Gaussian model and renormalization-group theory at fixed dimension
    Kastening, Boris
    Dohm, Volker
    PHYSICAL REVIEW E, 2010, 81 (06):
  • [50] A finite-size scaling study of the four-dimensional Ising model on the Creutz cellular automation
    Aktekin, N
    Günen, A
    Saglam, Z
    INTERNATIONAL JOURNAL OF MODERN PHYSICS C, 1999, 10 (05): : 875 - 881