Period, index and potential, III

被引:18
作者
Clark, Pete L. [1 ]
Sharif, Shahed [2 ]
机构
[1] Univ Georgia, Dept Math, Athens, GA 30602 USA
[2] Duke Univ, Dept Math, Durham, NC 27708 USA
基金
美国国家科学基金会;
关键词
period; index; Tate-Shafarevich group; TATE-SHAFAREVICH GROUPS; ELLIPTIC-CURVES; ARBITRARILY LARGE;
D O I
10.2140/ant.2010.4.151
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
We present three results on the period-index problem for genus-one curves over global fields. Our first result implies that for every pair of positive integers (P, I) such that I is divisible by P and divides P-2, there exists a number field K and a genus-one curve C-/K with period P and index I. Second, let E-/K be any elliptic curve over a global field K, and let P > 1 be any integer indivisible by the characteristic of K. We construct infinitely many genus-one curves C-/K with period P, index P-2, and Jacobian E. Our third result, on the structure of Shafarevich-Tate groups under field extension, follows as a corollary. Our main tools are Lichtenbaum-Tate duality and the functorial properties of O'Neil's period-index obstruction map under change of period.
引用
收藏
页码:151 / 174
页数:24
相关论文
共 28 条
[1]  
[Anonymous], 1986, GRADUATE TEXTS MATH
[2]  
[Anonymous], 1963, J. London Math. Soc.
[3]  
[Anonymous], 1962, Proc. London Math. Soc
[4]   ORDER OF SAFAREVIC-TATE GROUP CAN BE ARBITRARILY LARGE [J].
BOLLING, R .
MATHEMATISCHE NACHRICHTEN, 1975, 67 :157-179
[5]  
Bosch S., 1990, ERGEBNISSE MATH, V21
[6]  
Cassels J. W. S., 1964, J REINE ANGEW MATH, V214, P65, DOI DOI 10.1515/CRLL.1964.214-215.65
[7]  
CIPERIANI M, 2007, ARXIVMATH0701614
[8]   There are genus one curves of every index over every number field [J].
Clark, PL .
JOURNAL FUR DIE REINE UND ANGEWANDTE MATHEMATIK, 2006, 594 :201-206
[9]   The period-index problem in WC-groups I: elliptic curves [J].
Clark, PL .
JOURNAL OF NUMBER THEORY, 2005, 114 (01) :193-208
[10]  
CLARK PL, 2006, PERIOD INDEX PROBLEM