Spatial charting of single-cell transcriptomes in tissues

被引:105
作者
Wei, Runmin [1 ]
He, Siyuan [1 ,2 ]
Bai, Shanshan [1 ]
Sei, Emi [1 ]
Hu, Min [1 ]
Thompson, Alastair [3 ]
Chen, Ken [4 ]
Krishnamurthy, Savitri [5 ]
Navin, Nicholas E. [1 ,2 ,4 ]
机构
[1] UT MD Anderson Canc Ctr, Dept Genet, Houston, TX 77030 USA
[2] Univ Texas MD Anderson Canc Ctr, Grad Sch Biomed Sci, Houston, TX 77030 USA
[3] Baylor Coll Med, Dept Surg, Houston, TX 77030 USA
[4] UT MD Anderson Canc Ctr, Dept Bioinformat & Computat Biol, Houston, TX 77030 USA
[5] UT MD Anderson Canc Ctr, Dept Pathol, Houston, TX USA
关键词
INTRATUMOR HETEROGENEITY; EXPRESSION; DIVERSITY; BREAST;
D O I
10.1038/s41587-022-01233-1
中图分类号
Q81 [生物工程学(生物技术)]; Q93 [微生物学];
学科分类号
071005 ; 0836 ; 090102 ; 100705 ;
摘要
Single-cell RNA sequencing methods can profile the transcriptomes of single cells but cannot preserve spatial information. Conversely, spatial transcriptomics assays can profile spatial regions in tissue sections, but do not have single-cell resolution. Here, we developed a computational method called CellTrek that combines these two datasets to achieve single-cell spatial mapping through coembedding and metric learning approaches. We benchmarked CellTrek using simulation and in situ hybridization datasets, which demonstrated its accuracy and robustness. We then applied CellTrek to existing mouse brain and kidney datasets and showed that CellTrek can detect topological patterns of different cell types and cell states. We performed single-cell RNA sequencing and spatial transcriptomics experiments on two ductal carcinoma in situ tissues and applied CellTrek to identify tumor subclones that were restricted to different ducts, and specific T cell states adjacent to the tumor areas. Our data show that CellTrek can accurately map single cells in diverse tissue types to resolve their spatial organization.
引用
收藏
页码:1190 / +
页数:15
相关论文
共 50 条
  • [31] Single-cell transcriptomes reveal heterogeneity of high-grade serous ovarian carcinoma
    Hao, Qian
    Li, Jiajia
    Zhang, Qinghua
    Xu, Fei
    Xie, Bangxiang
    Lu, Hua
    Wu, Xiaohua
    Zhou, Xiang
    CLINICAL AND TRANSLATIONAL MEDICINE, 2021, 11 (08):
  • [32] Synthetic Analyses of Single-Cell Transcriptomes from Multiple Brain Organoids and Fetal Brain
    Tanaka, Yoshiaki
    Cakir, Bilal
    Xiang, Yangfei
    Sullivan, Gareth J.
    Park, In-Hyun
    CELL REPORTS, 2020, 30 (06): : 1682 - +
  • [33] SEVtras delineates small extracellular vesicles at droplet resolution from single-cell transcriptomes
    He, Ruiqiao
    Zhu, Junjie
    Ji, Peifeng
    Zhao, Fangqing
    NATURE METHODS, 2024, 21 (01) : 259 - 266
  • [34] Patch-Seq Links Single-Cell Transcriptomes to Human Islet Dysfunction in Diabetes
    Camunas-Soler, Joan
    Dai, Xiao-Qing
    Hang, Yan
    Bautista, Austin
    Lyon, James
    Suzuki, Kunimasa
    Kim, Seung K.
    Quake, Stephen R.
    MacDonald, Patrick E.
    CELL METABOLISM, 2020, 31 (05) : 1017 - +
  • [35] Inferring gene regulatory network from single-cell transcriptomes with graph autoencoder model
    Wang, Jiacheng
    Chen, Yaojia
    Zou, Quan
    PLOS GENETICS, 2023, 19 (09):
  • [36] Single-cell transcriptomes reveal a molecular link between diabetic kidney and retinal lesions
    Xu, Ying
    Xiang, Zhidan
    Weigao, E.
    Lang, Yue
    Huang, Sijia
    Qin, Weisong
    Yang, Jingping
    Chen, Zhaohong
    Liu, Zhihong
    COMMUNICATIONS BIOLOGY, 2023, 6 (01)
  • [37] Single-cell transcriptomes from human kidneys reveal the cellular identity of renal tumors
    Young, Matthew D.
    Mitchell, Thomas J.
    Braga, Felipe A. Vieira
    Tran, Maxine G. B.
    Stewart, Benjamin J.
    Ferdinand, John R.
    Collord, Grace
    Botting, Rachel A.
    Popescu, Dorin-Mirel
    Loudon, Kevin W.
    Vento-Tormo, Roser
    Stephenson, Emily
    Cagan, Alex
    Farndon, Sarah J.
    Velasco-Herrera, Martin Del Castillo
    Guzzo, Charlotte
    Richoz, Nathan
    Mamanova, Lira
    Aho, Tevita
    Armitage, James N.
    Riddick, Antony C. P.
    Mushtaq, Imran
    Farrell, Stephen
    Rampling, Dyanne
    Nicholson, James
    Filby, Andrew
    Burge, Johanna
    Lisgo, Steven
    Maxwell, Patrick H.
    Lindsay, Susan
    Warren, Anne Y.
    Stewart, Grant D.
    Sebire, Neil
    Coleman, Nicholas
    Haniffa, Muzlifah
    Teichmann, Sarah A.
    Clatworthy, Menna
    Behjati, Sam
    SCIENCE, 2018, 361 (6402) : 594 - +
  • [38] Single-Cell Transcriptomes Reveal Characteristic Features of Mouse Hepatocytes with Liver Cholestatic Injury
    Chang, Na
    Tian, Lei
    Ji, Xiaofang
    Zhou, Xuan
    Hou, Lei
    Zhao, Xinhao
    Yang, Yuanru
    Yang, Lin
    Li, Liying
    CELLS, 2019, 8 (09)
  • [39] Integrating single-cell and spatial transcriptomes reveals COL4A1/2 facilitates the spatial organisation of stromal cells differentiation in breast phyllodes tumours
    Li, Xia
    Yu, Xuewen
    Bi, Jiaxin
    Jiang, Xu
    Zhang, Lu
    Li, Zhixin
    Shao, Mumin
    CLINICAL AND TRANSLATIONAL MEDICINE, 2024, 14 (03):
  • [40] Characterizing dysregulations via cell-cell communications in Alzheimer's brains using single-cell transcriptomes
    Lee, Che Yu
    Riffle, Dylan
    Xiong, Yifeng
    Momtaz, Nadia
    Lei, Yutong
    Pariser, Joseph M.
    Sikdar, Diptanshu
    Hwang, Ahyeon
    Duan, Ziheng
    Zhang, Jing
    BMC NEUROSCIENCE, 2024, 25 (01):