Spatial charting of single-cell transcriptomes in tissues

被引:131
作者
Wei, Runmin [1 ]
He, Siyuan [1 ,2 ]
Bai, Shanshan [1 ]
Sei, Emi [1 ]
Hu, Min [1 ]
Thompson, Alastair [3 ]
Chen, Ken [4 ]
Krishnamurthy, Savitri [5 ]
Navin, Nicholas E. [1 ,2 ,4 ]
机构
[1] UT MD Anderson Canc Ctr, Dept Genet, Houston, TX 77030 USA
[2] Univ Texas MD Anderson Canc Ctr, Grad Sch Biomed Sci, Houston, TX 77030 USA
[3] Baylor Coll Med, Dept Surg, Houston, TX 77030 USA
[4] UT MD Anderson Canc Ctr, Dept Bioinformat & Computat Biol, Houston, TX 77030 USA
[5] UT MD Anderson Canc Ctr, Dept Pathol, Houston, TX USA
关键词
INTRATUMOR HETEROGENEITY; EXPRESSION; DIVERSITY; BREAST;
D O I
10.1038/s41587-022-01233-1
中图分类号
Q81 [生物工程学(生物技术)]; Q93 [微生物学];
学科分类号
071005 ; 0836 ; 090102 ; 100705 ;
摘要
Single-cell RNA sequencing methods can profile the transcriptomes of single cells but cannot preserve spatial information. Conversely, spatial transcriptomics assays can profile spatial regions in tissue sections, but do not have single-cell resolution. Here, we developed a computational method called CellTrek that combines these two datasets to achieve single-cell spatial mapping through coembedding and metric learning approaches. We benchmarked CellTrek using simulation and in situ hybridization datasets, which demonstrated its accuracy and robustness. We then applied CellTrek to existing mouse brain and kidney datasets and showed that CellTrek can detect topological patterns of different cell types and cell states. We performed single-cell RNA sequencing and spatial transcriptomics experiments on two ductal carcinoma in situ tissues and applied CellTrek to identify tumor subclones that were restricted to different ducts, and specific T cell states adjacent to the tumor areas. Our data show that CellTrek can accurately map single cells in diverse tissue types to resolve their spatial organization.
引用
收藏
页码:1190 / +
页数:15
相关论文
共 55 条
[1]  
Andersson, 2019, SPATIAL MAPPING CELL
[2]   Single-cell and spatial transcriptomics enables probabilistic inference of cell type topography [J].
Andersson, Alma ;
Bergenstrahle, Joseph ;
Asp, Michaela ;
Bergenstrahle, Ludvig ;
Jurek, Aleksandra ;
Fernandez Navarro, Jose ;
Lundeberg, Joakim .
COMMUNICATIONS BIOLOGY, 2020, 3 (01)
[3]   Random forests [J].
Breiman, L .
MACHINE LEARNING, 2001, 45 (01) :5-32
[4]  
Cable D. M., NAT BIOTECHNOL, DOI 10.1038/s41587-021-00830-w(2021
[5]   Multiclonal Invasion in Breast Tumors Identified by Topographic Single Cell Sequencing [J].
Casasent, Anna K. ;
Schalck, Aislyn ;
Gao, Ruli ;
Sei, Emi ;
Long, Annalyssa ;
Pangburn, William ;
Casasent, Tod ;
Meric-Bernstam, Funda ;
Edgerton, Mary E. ;
Navin, Nicholas E. .
CELL, 2018, 172 (1-2) :205-+
[6]   Spatiotemporal analysis of human intestinal development at single-cell resolution [J].
Fawkner-Corbett, David ;
Antanaviciute, Agne ;
Parikh, Kaushal ;
Jagielowicz, Marta ;
Geros, Ana Sousa ;
Gupta, Tarun ;
Ashley, Neil ;
Khamis, Doran ;
Fowler, Darren ;
Morrissey, Edward ;
Cunningham, Chris ;
Johnson, Paul R., V ;
Koohy, Hashem ;
Simmons, Alison .
CELL, 2021, 184 (03) :810-+
[7]   Delineating copy number and clonal substructure in human tumors from single-cell transcriptomes [J].
Gao, Ruli ;
Bai, Shanshan ;
Henderson, Ying C. ;
Lin, Yiyun ;
Schalck, Aislyn ;
Yan, Yun ;
Kumar, Tapsi ;
Hu, Min ;
Sei, Emi ;
Davis, Alexander ;
Wang, Fang ;
Shaitelman, Simona F. ;
Wang, Jennifer Rui ;
Chen, Ken ;
Moulder, Stacy ;
Lai, Stephen Y. ;
Navin, Nicholas E. .
NATURE BIOTECHNOLOGY, 2021, 39 (05) :599-608
[8]   Complex heatmaps reveal patterns and correlations in multidimensional genomic data [J].
Gu, Zuguang ;
Eils, Roland ;
Schlesner, Matthias .
BIOINFORMATICS, 2016, 32 (18) :2847-2849
[9]   dbscan: Fast Density-Based Clustering with R [J].
Hahsler, Michael ;
Piekenbrock, Matthew ;
Doran, Derek .
JOURNAL OF STATISTICAL SOFTWARE, 2019, 91 (01) :1-30
[10]   RANDOM SURVIVAL FORESTS [J].
Ishwaran, Hemant ;
Kogalur, Udaya B. ;
Blackstone, Eugene H. ;
Lauer, Michael S. .
ANNALS OF APPLIED STATISTICS, 2008, 2 (03) :841-860