Inference and parameter estimation on hierarchical belief networks for image segmentation

被引:5
|
作者
Wolf, Christian [1 ,3 ]
Gavin, Gerald [1 ,2 ]
机构
[1] Univ Lyon, CNRS, Lyon, France
[2] Univ Lyon 1, ERIC, F-69622 Villeurbanne, France
[3] INSA, LIRIS, UMR5205, F-69621 Villeurbanne, France
关键词
Belief networks; Image segmentation; Graph cuts; MARKOV RANDOM-FIELD; ENERGY MINIMIZATION; GRAPH CUTS; CLASSIFICATION; MODEL; DOCUMENTS; ALGORITHM;
D O I
10.1016/j.neucom.2009.07.017
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
We introduce a new causal hierarchical belief network for image segmentation. Contrary to classical tree structured (or pyramidal) models, the factor graph of the network contains cycles. Each level of the hierarchical structure features the same number of sites as the base level and each site on a given level has several neighbors on the parent level. Compared to tree structured models, the (spatial) random process on the base level of the model is stationary which avoids known drawbacks, namely visual artifacts in the segmented image. We propose different parameterizations of the conditional probability distributions governing the transitions between the image levels. A parametric distribution depending on a single parameter allows the design of a fast inference algorithm on graph cuts, whereas for arbitrary distributions, we propose inference with loopy belief propagation. The method is evaluated on scanned documents, showing an improvement of character recognition results compared to other methods. (C) 2009 Elsevier B.V. All rights reserved.
引用
收藏
页码:563 / 569
页数:7
相关论文
共 50 条
  • [1] Hierarchical Belief Propagation on Image Segmentation Pyramid
    Yan, Tingman
    Yang, Xilian
    Yang, Genke
    Zhao, Qunfei
    IEEE TRANSACTIONS ON IMAGE PROCESSING, 2023, 32 : 4432 - 4442
  • [2] Image segmentation based on hierarchical belief propagation with variable weighting parameters
    Zheng, Chen
    OPTIK, 2014, 125 (03): : 1158 - 1163
  • [3] Simultaneous parameter estimation and image segmentation for image sequence coding
    Matthews, KE
    Namazi, NM
    VISUAL COMMUNICATIONS AND IMAGE PROCESSING '96, 1996, 2727 : 1062 - 1069
  • [4] A BELIEF PROPAGATION ALGORITHM FOR BIAS FIELD ESTIMATION AND IMAGE SEGMENTATION
    Huang, Rui
    Sang, Nong
    Pavlovic, Vladimir
    Metaxas, Dimitris N.
    2011 18TH IEEE INTERNATIONAL CONFERENCE ON IMAGE PROCESSING (ICIP), 2011, : 37 - 40
  • [5] Variational inference for medical image segmentation
    Blaiotta, Claudia
    Cardoso, M. Jorge
    Ashburner, John
    COMPUTER VISION AND IMAGE UNDERSTANDING, 2016, 151 : 14 - 28
  • [6] Multi-input Topology of Deep Belief Networks for Image Segmentation
    Nickfarjam, A. M.
    Ebrahimpour-komleh, H.
    SECOND INTERNATIONAL CONGRESS ON TECHNOLOGY, COMMUNICATION AND KNOWLEDGE (ICTCK 2015), 2015, : 482 - 485
  • [7] Simultaneous parameter estimation and object segmentation from image sequences
    Matthews, KE
    Namazi, NM
    1996 IEEE INTERNATIONAL CONFERENCE ON ACOUSTICS, SPEECH, AND SIGNAL PROCESSING, CONFERENCE PROCEEDINGS, VOLS 1-6, 1996, : 1970 - 1973
  • [8] Unsupervised hierarchical image segmentation through fuzzy entropy maximization
    Yin, Shibai
    Qian, Yiming
    Gong, Minglun
    PATTERN RECOGNITION, 2017, 68 : 245 - 259
  • [9] IMAGE SEGMENTATION USING CONSENSUS FROM HIERARCHICAL SEGMENTATION ENSEMBLES
    Kim, Hyojin
    Thiagarajan, Jayaraman J.
    Bremer, Peer-Timo
    2014 IEEE INTERNATIONAL CONFERENCE ON IMAGE PROCESSING (ICIP), 2014, : 3272 - 3276
  • [10] Image segmentation using adaptive loopy belief propagation
    Xu, Sheng-Jun
    Han, Jiu-Qiang
    Yu, Jun-Qi
    Zhao, Liang
    OPTIK, 2013, 124 (22): : 5732 - 5738