On (2n/3-1)-Resilient (n, 2)-Functions

被引:0
作者
Krotov, Denis S. [1 ]
机构
[1] Sobolev Inst Math, Novosibirsk 630090, Russia
来源
2019 IEEE INTERNATIONAL SYMPOSIUM ON INFORMATION THEORY (ISIT) | 2019年
基金
俄罗斯科学基金会;
关键词
vectorial Boolean functions; resilient Boolean functions; correlation-immune functions; equitable partitions; Latin hypercubes; QUASI-GROUPS;
D O I
暂无
中图分类号
TP [自动化技术、计算机技术];
学科分类号
0812 ;
摘要
A {00,01,10,11}-valued function on the vertices of the n-cube is called a t-resilient (n,2)-function if it has the same number of 00s, 01s, 10s and 11s among the vertices of every subcube of dimension t. The Friedman and Fon-Der-Flaass bounds on the correlation immunity order say that such a function must satisfy t <= 2n/3 - 1; moreover, the (2n/3 - 1)-resilient (n,2)-functions correspond to the equitable partitions of the n-cube with the quotient matrix [[0, r, r, r], [r, 0, r, r], [r, r, 0, r], [r, r, r, 0]], r = n/3. We suggest constructions of such functions and corresponding partitions, show connections with Latin hypercubes and binary 1-perfect codes, characterize the non-full-rank and the reducible functions from the considered class, and discuss the possibility to make a complete characterization of the class.
引用
收藏
页码:2957 / 2961
页数:5
相关论文
共 14 条
[1]  
Carlet C., 2010, BOOLEAN MODELS METHO, P398, DOI DOI 10.1017/CBO9780511780448.012
[2]  
Chor B., 1985, 26th Annual Symposium on Foundations of Computer Science (Cat. No.85CH2224-4), P396, DOI 10.1109/SFCS.1985.55
[3]  
Fon-Der-Flaass DG, 2007, SIB ELECTRON MATH RE, V4, P292
[4]  
Fon-Der-Flaass DG, 2007, SIB ELECTRON MATH RE, V4, P133
[5]  
Friedman J., 1992, Proceedings 33rd Annual Symposium on Foundations of Computer Science (Cat. No.92CH3188-0), P314, DOI 10.1109/SFCS.1992.267760
[6]   On Multifold MDS and Perfect Codes That Are Not Splittable into Onefold Codes [J].
D. S. Krotov ;
V. N. Potapov .
Problems of Information Transmission, 2004, 40 (1) :5-12
[7]  
Krotov D.S., 2018, 181202166V2 ARXIV
[8]   n-ARY QUASIGROUPS OF ORDER 4 [J].
Krotov, Denis S. ;
Potapov, Vladimir N. .
SIAM JOURNAL ON DISCRETE MATHEMATICS, 2009, 23 (02) :561-570
[9]   Asymptotics for the number of n-quasigroups of order 4 [J].
Potapov, V. N. ;
Krotov, D. S. .
SIBERIAN MATHEMATICAL JOURNAL, 2006, 47 (04) :720-731
[10]  
Potapov VN, 2010, SIB ELECTRON MATH RE, V7, P372