Resonant codimension two bifurcation in a neutral functional differential equation

被引:11
作者
Campbell, SA [1 ]
机构
[1] Univ Waterloo, Dept Appl Math, Waterloo, ON N2L 3G1, Canada
[2] McGill Univ, Ctr Nonlinear Dynam Physiol & Med, Quebec City, PQ, Canada
关键词
neutral functional differential equation; codimension two bifurcation; Hopf bifurcation; linear stability analysis; characteristic equation;
D O I
10.1016/S0362-546X(97)00317-9
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
[No abstract available]
引用
收藏
页码:4577 / 4584
页数:8
相关论文
共 16 条
  • [1] STABILITY CRITERIA FOR SECOND-ORDER DYNAMICAL SYSTEMS WITH TIME LAG
    BHATT, SJ
    HSU, CS
    [J]. JOURNAL OF APPLIED MECHANICS, 1966, 33 (01): : 113 - &
  • [2] CAMPBELL S, 1996, J DYN DIFF EQS
  • [3] Complex dynamics and multistability in a damped harmonic oscillator with delayed negative feedback
    Campbell, SA
    Belair, J
    Ohira, T
    Milton, J
    [J]. CHAOS, 1995, 5 (04) : 640 - 645
  • [4] CAMPBELL SA, 1995, J DYN DIFFER EQU, V7, DOI DOI 10.1007/BF02218819
  • [5] DISCRETE DELAY, DISTRIBUTED DELAY AND STABILITY SWITCHES
    COOKE, KL
    GROSSMAN, Z
    [J]. JOURNAL OF MATHEMATICAL ANALYSIS AND APPLICATIONS, 1982, 86 (02) : 592 - 627
  • [6] Guckenheimer J., 2013, NONLINEAR OSCILLATIO, V42, DOI DOI 10.1007/978-1-4612-1140-2
  • [7] Hale J. K., 1993, INTRO FUNCTIONAL DIF, DOI 10.1007/978-1-4612-4342-7
  • [8] STABILITY CHARTS FOR SECOND-ORDER DYNAMICAL SYSTEMS WITH TIME LAG
    HSU, CS
    BHATT, SJ
    [J]. JOURNAL OF APPLIED MECHANICS, 1966, 33 (01): : 119 - &
  • [9] IOOSS G, 1975, TURBULENCE NAVIER ST, V565, P69
  • [10] THE DOUBLE HOPF-BIFURCATION WITH 2-1 RESONANCE
    KNOBLOCH, E
    PROCTOR, MRE
    [J]. PROCEEDINGS OF THE ROYAL SOCIETY OF LONDON SERIES A-MATHEMATICAL PHYSICAL AND ENGINEERING SCIENCES, 1988, 415 (1848): : 61 - 90