Hot-Electron Injection in Au Nanorod-ZnO Nanowire Hybrid Device for Near-Infrared Photodetection

被引:155
作者
Pescaglini, Andrea [1 ]
Martin, Alfonso [1 ]
Cammi, Davide [2 ]
Juska, Gediminas [1 ]
Ronning, Carsten [2 ]
Pelucchi, Emanuele [1 ]
Iacopino, Daniela [1 ]
机构
[1] Natl Univ Ireland Univ Coll Cork, Tyndall Natl Inst, Cork, Ireland
[2] Univ Jena, Inst Solid State Phys, D-07743 Jena, Germany
基金
爱尔兰科学基金会;
关键词
plasmon; hot electron; nanowire; Au nanorod; photodetector; METAL NANOCRYSTALS; INTERFACES; NANOPARTICLES; PHOTOCURRENT; GENERATION; CARRIERS; FILMS;
D O I
10.1021/nl5024854
中图分类号
O6 [化学];
学科分类号
0703 ;
摘要
In this Letter, we present a new class of near-infrared photodetectors comprising Au nanorods-ZnO nanowire hybrid systems. Fabricated hybrid FET devices showed a large photoresponse under radiation wavelengths between 650 and 850 nm, accompanied by an "ultrafast" transient with a time scale of 250 ms, more than 1 order of magnitude faster than the ZnO response under radiation above band gap. The generated photocurrent is ascribed to plasmonic-mediated generation of hot electrons at the metal-semiconductor Schottky barrier. In the presented architecture, Au-nanorod-localized surface plasmons were used as active elements for generating and injecting hot electrons into the wide band gap ZnO nanowire, functioning as a passive component for charge collection. A detailed investigation of the hot electron generation and injection processes is discussed to explain the improved and extended performance of the hybrid device. The quantum efficiency measured at 650 nm was calculated to be approximately 3%, more than 30 times larger than values reported for equivalent metal/semiconductor planar photodetectors. The presented work is extremely promising for further development of novel miniaturized, tunable photodetectors and for highly efficient plasmonic energy conversion devices.
引用
收藏
页码:6202 / 6209
页数:8
相关论文
共 47 条
[1]  
[Anonymous], 2005, ELECTROMECHANICS PAR
[2]  
Aradhya SV, 2012, NAT MATER, V11, P872, DOI [10.1038/NMAT3403, 10.1038/nmat3403]
[3]   Role of defects in the anomalous photoconductivity in ZnO nanowires [J].
Bera, A. ;
Basak, D. .
APPLIED PHYSICS LETTERS, 2009, 94 (16)
[4]   Spectroscopy of molecular junction networks obtained by place exchange in 2D nanoparticle arrays [J].
Bernard, Laetitia ;
Kamdzhilov, Yavor ;
Calame, Michel ;
van der Molen, Sense Jan ;
Liao, Jianhui ;
Schoenenberger, Christian .
JOURNAL OF PHYSICAL CHEMISTRY C, 2007, 111 (50) :18445-18450
[5]   Tunable electronic interfaces between bulk semiconductors and ligand-stabilized nanoparticle assemblies [J].
Boettcher, Shannon W. ;
Strandwitz, Nicholas C. ;
Schierhorn, Martin ;
Lock, Nina ;
Lonergan, Mark C. ;
Stucky, Galen D. .
NATURE MATERIALS, 2007, 6 (08) :592-596
[6]   Photonic-Plasmonic Coupling of GaAs Single Nanowires to Optical Nanoantennas [J].
Casadei, Alberto ;
Pecora, Emanuele F. ;
Trevino, Jacob ;
Forestiere, Carlo ;
Rueffer, Daniel ;
Russo-Averchi, Eleonora ;
Matteini, Federico ;
Tutuncuoglu, Gozde ;
Heiss, Martin ;
Fontcuberta i Morral, Anna ;
Dal Negro, Luca .
NANO LETTERS, 2014, 14 (05) :2271-2278
[7]   Tailoring Optical Properties of Silicon Nanowires by Au Nanostructure Decorations: Enhanced Raman Scattering and Photodetection [J].
Chen, Renjie ;
Li, Dehui ;
Hu, Hailong ;
Zhao, Yanyuan ;
Wang, Ying ;
Wong, Nancy ;
Wang, Shijie ;
Zhang, Yi ;
Hu, Jun ;
Shen, Zexiang ;
Xiong, Qihua .
JOURNAL OF PHYSICAL CHEMISTRY C, 2012, 116 (07) :4416-4422
[8]   Surface plasmon enhanced band edge luminescence of ZnO nanorods by capping Au nanoparticles [J].
Cheng, C. W. ;
Sie, E. J. ;
Liu, B. ;
Huan, C. H. A. ;
Sum, T. C. ;
Sun, H. D. ;
Fan, H. J. .
APPLIED PHYSICS LETTERS, 2010, 96 (07)
[9]  
Chu S, 2011, NAT NANOTECHNOL, V6, P506, DOI [10.1038/nnano.2011.97, 10.1038/NNANO.2011.97]
[10]  
Clavero C, 2014, NAT PHOTONICS, V8, P95, DOI [10.1038/nphoton.2013.238, 10.1038/NPHOTON.2013.238]