Transition zone structure under a stationary hot spot: Cape Verde

被引:21
|
作者
Helffrich, George [1 ]
Faria, Bruno [2 ,3 ]
Fonseca, Joao F. B. D. [3 ,4 ]
Lodge, Alexandra [1 ]
Kaneshima, Satoshi [5 ]
机构
[1] Univ Bristol, Bristol BS8 1RJ, Avon, England
[2] Inst Nacl Meteorol & Geofis, S Vicente, Cape Verde
[3] Inst Super Tecn, Dept Phys, P-1049001 Lisbon, Portugal
[4] Inst Super Tecn, ICIST, P-1049001 Lisbon, Portugal
[5] Tokyo Inst Technol, Meguro Ku, Tokyo 1528551, Japan
关键词
Cape Verde; hot spot; transition zone; receiver function; MANTLE PLUMES; HOTSPOTS; TOPOGRAPHY; BENEATH;
D O I
10.1016/j.epsl.2009.11.001
中图分类号
P3 [地球物理学]; P59 [地球化学];
学科分类号
0708 ; 070902 ;
摘要
We report on a two-year seismic deployment in the Cape Verde Islands, one goal of which was to study the upper mantle to determine its structure under a hot spot that is stationary in the hot spot reference frame. We find from analysis of P-to-S receiver functions estimated from broadband seismic recordings that, within uncertainty, the time separation between the 410 and 660 km discontinuities is normal compared to radial earth models. Thus, to exist, even stationary hot spots do not require vertical thermal anomalies from deep melting sources anchored in the lower mantle or at the core-mantle boundary or their anomalies are narrower than similar to 250 km in the upper mantle. (C) 2009 Elsevier B.V. All rights reserved.
引用
收藏
页码:156 / 161
页数:6
相关论文
共 50 条
  • [31] Transition zone structure in a tectonically inactive area: 410 and 660 km discontinuity properties under the northern North Sea
    Helffrich, G
    Asencio, E
    Knapp, J
    Owens, T
    GEOPHYSICAL JOURNAL INTERNATIONAL, 2003, 155 (01) : 193 - 199
  • [32] Structure-function characterization of the transition zone in the intervertebral disc
    Mirzaeipoueinak, Melika
    Mordechai, Haim S.
    Bangar, Saie Sunil
    Sharabi, Mirit
    Tipper, Joanne L.
    Tavakoli, Javad
    ACTA BIOMATERIALIA, 2023, 160 : 164 - 175
  • [33] Seismic Evidence for a Hot Mantle Transition Zone Beneath the Indian Ocean Geoid Low
    Rao, B. Padma
    Kumar, M. Ravi
    Saikia, Dipankar
    GEOCHEMISTRY GEOPHYSICS GEOSYSTEMS, 2020, 21 (07)
  • [34] Mantle transition zone structure beneath the Alaska-Aleutian subduction zone and its surroundings
    Xiao Yong
    Zhang RuiQing
    Kuang ChunLi
    CHINESE JOURNAL OF GEOPHYSICS-CHINESE EDITION, 2021, 64 (03): : 838 - 850
  • [35] Mantle transition zone structure beneath the Changbai volcano: Insight into deep slab dehydration and hot upwelling near the 410km discontinuity
    Tian, You
    Zhu, Hongxiang
    Zhao, Dapeng
    Liu, Cai
    Feng, Xuan
    Liu, Ting
    Ma, Jincheng
    JOURNAL OF GEOPHYSICAL RESEARCH-SOLID EARTH, 2016, 121 (08) : 5794 - 5808
  • [36] Crustal Structure Along Sunda-Banda Arc Transition Zone from Teleseismic Receiver Functions
    Syuhada, Syuhada
    Hananto, Nugroho Dwi
    Abdullah, Chalid I.
    Puspito, Nanang T.
    Anggono, Titi
    Yudistira, Tedi
    ACTA GEOPHYSICA, 2016, 64 (06): : 2020 - 2049
  • [37] Modeling Latency in Deterministic Wormhole-Routed Hypercubes under Hot-Spot Traffic
    S. Loucif
    M. Ould-khaoua
    The Journal of Supercomputing, 2004, 27 : 265 - 278
  • [38] Crystalline Silicon PV Module Under Effect of Shading Simulation of the Hot-Spot Condition
    Anjos, Ruben S.
    Melicio, Rui
    Mendes, Victor M. F.
    Pousinho, Hugo M. I.
    TECHNICAL INNOVATION FOR SMART SYSTEMS (DOCEIS 2017), 2017, 499 : 479 - 487
  • [39] Modeling latency in deterministic wormhole-routed hypercubes under hot-spot traffic
    Loucif, S
    Ould-Khaoua, M
    JOURNAL OF SUPERCOMPUTING, 2004, 27 (03) : 265 - 278
  • [40] Mantle transition zone structure beneath the Central Asian Orogenic Belt
    He, Jing
    Wu, Qingju
    SCIENCE CHINA-EARTH SCIENCES, 2020, 63 (04) : 548 - 560