Diffraction-free beams in fractional Schrodinger equation

被引:109
作者
Zhang, Yiqi [1 ,2 ]
Zhong, Hua [1 ,2 ]
Belic, Milivoj R. [3 ]
Ahmed, Noor [1 ,2 ]
Zhang, Yanpeng [1 ,2 ]
Xiao, Min [4 ,5 ,6 ]
机构
[1] Xi An Jiao Tong Univ, Minist Educ, Key Lab Phys Elect & Devices, Xian 710049, Peoples R China
[2] Xi An Jiao Tong Univ, Shaanxi Key Lab Informat Photon Tech, Xian 710049, Peoples R China
[3] Texas A&M Univ Qatar, Sci Program, POB 23874, Doha, Qatar
[4] Univ Arkansas, Dept Phys, Fayetteville, AR 72701 USA
[5] Nanjing Univ, Natl Lab Solid State Microstruct, Nanjing 210093, Jiangsu, Peoples R China
[6] Nanjing Univ, Sch Phys, Nanjing 210093, Jiangsu, Peoples R China
来源
SCIENTIFIC REPORTS | 2016年 / 6卷
基金
中国国家自然科学基金;
关键词
DYNAMICS;
D O I
10.1038/srep23645
中图分类号
O [数理科学和化学]; P [天文学、地球科学]; Q [生物科学]; N [自然科学总论];
学科分类号
07 ; 0710 ; 09 ;
摘要
We investigate the propagation of one-dimensional and two-dimensional (1D, 2D) Gaussian beams in the fractional Schrodinger equation (FSE) without a potential, analytically and numerically. Without chirp, a 1D Gaussian beam splits into two nondiffracting Gaussian beams during propagation, while a 2D Gaussian beam undergoes conical diffraction. When a Gaussian beam carries linear chirp, the 1D beam deflects along the trajectories z = +/- 2(x - x(0)), which are independent of the chirp. In the case of 2D Gaussian beam, the propagation is also deflected, but the trajectories align along the diffraction cone z = 2 root x(2) + y(2) and the direction is determined by the chirp. Both 1D and 2D Gaussian beams are diffractionless and display uniform propagation. The nondiffracting property discovered in this model applies to other beams as well. Based on the nondiffracting and splitting properties, we introduce the Talbot effect of diffractionless beams in FSE.
引用
收藏
页数:8
相关论文
共 35 条
  • [1] Bandres MA, 2013, OPT PHOTONICS NEWS, V24, P30, DOI 10.1364/OPN.24.6.000030
  • [2] Bayn S. S., 2013, J MATH PHYS, V54
  • [3] NON-SPREADING WAVE PACKETS
    BERRY, MV
    BALAZS, NL
    [J]. AMERICAN JOURNAL OF PHYSICS, 1979, 47 (03) : 264 - 267
  • [4] Self-healing properties of optical Airy beams
    Broky, John
    Siviloglou, Georgios A.
    Dogariu, Aristide
    Christodoulides, Demetrios N.
    [J]. OPTICS EXPRESS, 2008, 16 (17) : 12880 - 12891
  • [5] Tunneling in fractional quantum mechanics
    Capelas de Oliveira, E.
    Vaz, Jayme, Jr.
    [J]. JOURNAL OF PHYSICS A-MATHEMATICAL AND THEORETICAL, 2011, 44 (18)
  • [6] Some solutions to the space fractional Schrodinger equation using momentum representation method
    Dong, Jianping
    Xu, Mingyu
    [J]. JOURNAL OF MATHEMATICAL PHYSICS, 2007, 48 (07)
  • [7] Coherent random walks in free space
    Eichelkraut, Toni
    Vetter, Christian
    Perez-Leija, Armando
    Moya-Cessa, Hector
    Christodoulides, Demetrios N.
    Szameit, Alexander
    [J]. OPTICA, 2014, 1 (04): : 268 - 271
  • [8] Goodman J. W., 2005, INTRO FOURIER OPTICS
  • [9] Some physical applications of fractional Schrodinger equation
    Guo, Xiaoyi
    Xu, Mingyu
    [J]. JOURNAL OF MATHEMATICAL PHYSICS, 2006, 47 (08)
  • [10] Herrmann R., 2011, Fractional calculus: an introduction for physicists, DOI [DOI 10.1142/8072, 10.1142/8072]