Cause and cure of sloppiness in ordinary differential equation models

被引:23
作者
Toensing, Christian [1 ]
Timmer, Jens [1 ,2 ]
Kreutz, Clemens [1 ]
机构
[1] Univ Freiburg, Inst Phys, D-79104 Freiburg, Germany
[2] Univ Freiburg, BIOSS Ctr Biol Signalling Studies, D-79104 Freiburg, Germany
来源
PHYSICAL REVIEW E | 2014年 / 90卷 / 02期
关键词
SYSTEMS BIOLOGY; SENSITIVITY; NETWORKS; DESIGN;
D O I
10.1103/PhysRevE.90.023303
中图分类号
O35 [流体力学]; O53 [等离子体物理学];
学科分类号
070204 ; 080103 ; 080704 ;
摘要
Data-based mathematical modeling of biochemical reaction networks, e. g., by nonlinear ordinary differential equation (ODE) models, has been successfully applied. In this context, parameter estimation and uncertainty analysis is a major task in order to assess the quality of the description of the system by the model. Recently, a broadened eigenvalue spectrum of the Hessian matrix of the objective function covering orders of magnitudes was observed and has been termed as sloppiness. In this work, we investigate the origin of sloppiness from structures in the sensitivity matrix arising from the properties of the model topology and the experimental design. Furthermore, we present strategies using optimal experimental design methods in order to circumvent the sloppiness issue and present nonsloppy designs for a benchmark model.
引用
收藏
页数:15
相关论文
共 44 条
[1]  
[Anonymous], 2002, Statistical Physics: An Advanced Approach with Applications
[2]   Sloppy models, parameter uncertainty, and the role of experimental design [J].
Apgar, Joshua F. ;
Witmer, David K. ;
White, Forest M. ;
Tidor, Bruce .
MOLECULAR BIOSYSTEMS, 2010, 6 (10) :1890-1900
[3]   Gene Circuit Analysis of the Terminal Gap Gene huckebein [J].
Ashyraliyev, Maksat ;
Siggens, Ken ;
Janssens, Hilde ;
Blom, Joke ;
Akam, Michael ;
Jaeger, Johannes .
PLOS COMPUTATIONAL BIOLOGY, 2009, 5 (10)
[4]   DEVELOPMENTS IN THE DESIGN OF EXPERIMENTS [J].
ATKINSON, AC .
INTERNATIONAL STATISTICAL REVIEW, 1982, 50 (02) :161-177
[5]   Division of labor by dual feedback regulators controls JAK2/STAT5 signaling over broad ligand range [J].
Bachmann, Julie ;
Raue, Andreas ;
Schilling, Marcel ;
Boehm, Martin E. ;
Kreutz, Clemens ;
Kaschek, Daniel ;
Busch, Hauke ;
Gretz, Norbert ;
Lehmann, Wolf D. ;
Timmer, Jens ;
Klingmueller, Ursula .
MOLECULAR SYSTEMS BIOLOGY, 2011, 7
[6]  
Bai ZD, 2008, STAT SINICA, V18, P425
[7]   Computational procedures for optimal experimental design in biological systems [J].
Balsa-Canto, E. ;
Alonso, A. A. ;
Banga, J. R. .
IET SYSTEMS BIOLOGY, 2008, 2 (04) :163-172
[8]   Optimal Experimental Design for Parameter Estimation of a Cell Signaling Model [J].
Bandara, Samuel ;
Schloeder, Johannes P. ;
Eils, Roland ;
Bock, Hans Georg ;
Meyer, Tobias .
PLOS COMPUTATIONAL BIOLOGY, 2009, 5 (11)
[9]   Covering a Broad Dynamic Range: Information Processing at the Erythropoietin Receptor [J].
Becker, Verena ;
Schilling, Marcel ;
Bachmann, Julie ;
Baumann, Ute ;
Raue, Andreas ;
Maiwald, Thomas ;
Timmer, Jens ;
Klingmueller, Ursula .
SCIENCE, 2010, 328 (5984) :1404-1408
[10]   The statistical mechanics of complex signaling networks: nerve growth factor signaling [J].
Brown, KS ;
Hill, CC ;
Calero, GA ;
Myers, CR ;
Lee, KH ;
Sethna, JP ;
Cerione, RA .
PHYSICAL BIOLOGY, 2004, 1 (03) :184-195