Comparison of Photonic Reservoir Computing Systems for Fiber Transmission Equalization

被引:37
作者
Argyris, Apostolos [1 ]
Cantero, Javier [1 ]
Galletero, M. [1 ]
Pereda, Ernesto [2 ,3 ,4 ]
Mirasso, Claudio R. [1 ]
Fischer, Ingo [1 ]
Soriano, Miguel C. [1 ]
机构
[1] UIB, CSIC, IFISC, Campus Univ Illes Balears, Palma De Mallorca 07122, Spain
[2] Univ La Laguna, Dept Ind Engn, Tenerife 38200, Spain
[3] Univ La Laguna, Inst Biomed Technol, Tenerife 38200, Spain
[4] Univ Polytech Madrid, Ctr Biomed Technol, Lab Cognit & Computat Neurosci, Madrid 28223, Spain
关键词
Optical neural networks; optical data processing; nonlinear optics; photonics; optical modulation; optical fiber communication; delay systems; artificial neural networks; PERFORMANCE; DYNAMICS; STATE;
D O I
10.1109/JSTQE.2019.2936947
中图分类号
TM [电工技术]; TN [电子技术、通信技术];
学科分类号
0808 ; 0809 ;
摘要
In recent years, various methods, architectures, and implementations have been proposed to realize hardware-based reservoir computing (RC) for a range of classification and prediction tasks. Here we compare two photonic platforms that owe their computational nonlinearity to an optically injected semiconductor laser and to the optical transmission function of a Mach-Zehnder modulator, respectively. We numerically compare these platforms in a delay-based reservoir computing framework, in particular exploring their ability to perform equalization tasks on nonlinearly distorted signals at the output of a fiber-optic transmission line. Although the non-linear processing provided by the two systems is different, both produce a substantial reduction of the bit-error-rate (BER) for such signals of up to several orders of magnitude. We show that the obtained equalization performance depends significantly on the operating conditions of the physical systems, the size of the reservoir and the output layer training method.
引用
收藏
页数:9
相关论文
共 41 条
[1]   Information processing using a single dynamical node as complex system [J].
Appeltant, L. ;
Soriano, M. C. ;
Van der Sande, G. ;
Danckaert, J. ;
Massar, S. ;
Dambre, J. ;
Schrauwen, B. ;
Mirasso, C. R. ;
Fischer, I. .
NATURE COMMUNICATIONS, 2011, 2
[2]   Chaos-based communications at high bit rates using commercial fibre-optic links [J].
Argyris, A ;
Syvridis, D ;
Larger, L ;
Annovazzi-Lodi, V ;
Colet, P ;
Fischer, I ;
García-Ojalvo, J ;
Mirasso, CR ;
Pesquera, L ;
Shore, KA .
NATURE, 2005, 438 (7066) :343-346
[3]   PAM-4 Transmission at 1550 nm Using Photonic Reservoir Computing Post-Processing [J].
Argyris, Apostolos ;
Bueno, Julian ;
Fischer, Ingo .
IEEE ACCESS, 2019, 7 :37017-37025
[4]   Photonic machine learning implementation for signal recovery in optical communications [J].
Argyris, Apostolos ;
Bueno, Julian ;
Fischer, Ingo .
SCIENTIFIC REPORTS, 2018, 8
[5]   Tutorial: Photonic neural networks in delay systems [J].
Brunner, D. ;
Penkovsky, B. ;
Marquez, B. A. ;
Jacquot, M. ;
Fischer, I. ;
Larger, L. .
JOURNAL OF APPLIED PHYSICS, 2018, 124 (15)
[6]   Parallel photonic information processing at gigabyte per second data rates using transient states [J].
Brunner, Daniel ;
Soriano, Miguel C. ;
Mirasso, Claudio R. ;
Fischer, Ingo .
NATURE COMMUNICATIONS, 2013, 4
[7]   Conditions for reservoir computing performance using semiconductor lasers with delayed optical feedback [J].
Bueno, Julian ;
Brunner, Daniel ;
Soriano, Miguel C. ;
Fischer, Ingo .
OPTICS EXPRESS, 2017, 25 (03) :2401-2412
[8]   All-Optical Reservoir Computing on a Photonic Chip Using Silicon-Based Ring Resonators [J].
Coarer, Florian Denis-Le ;
Sciamanna, Marc ;
Katumba, Andrew ;
Freiberger, Matthias ;
Dambre, Joni ;
Bienstman, Peter ;
Rontani, Damien .
IEEE JOURNAL OF SELECTED TOPICS IN QUANTUM ELECTRONICS, 2018, 24 (06)
[9]  
Dale M, 2017, EMERGENCE COMPLEX CO, V22, P533, DOI 10.1007/978-3-319-33924-5_22
[10]   All-optical reservoir computer based on saturation of absorption [J].
Dejonckheere, Antoine ;
Duport, Francois ;
Smerieri, Anteo ;
Fang, Li ;
Oudar, Jean-Louis ;
Haelterman, Marc ;
Massar, Serge .
OPTICS EXPRESS, 2014, 22 (09) :10868-10881