Comparison of Photonic Reservoir Computing Systems for Fiber Transmission Equalization

被引:34
|
作者
Argyris, Apostolos [1 ]
Cantero, Javier [1 ]
Galletero, M. [1 ]
Pereda, Ernesto [2 ,3 ,4 ]
Mirasso, Claudio R. [1 ]
Fischer, Ingo [1 ]
Soriano, Miguel C. [1 ]
机构
[1] UIB, CSIC, IFISC, Campus Univ Illes Balears, Palma De Mallorca 07122, Spain
[2] Univ La Laguna, Dept Ind Engn, Tenerife 38200, Spain
[3] Univ La Laguna, Inst Biomed Technol, Tenerife 38200, Spain
[4] Univ Polytech Madrid, Ctr Biomed Technol, Lab Cognit & Computat Neurosci, Madrid 28223, Spain
关键词
Optical neural networks; optical data processing; nonlinear optics; photonics; optical modulation; optical fiber communication; delay systems; artificial neural networks; PERFORMANCE; DYNAMICS; STATE;
D O I
10.1109/JSTQE.2019.2936947
中图分类号
TM [电工技术]; TN [电子技术、通信技术];
学科分类号
0808 ; 0809 ;
摘要
In recent years, various methods, architectures, and implementations have been proposed to realize hardware-based reservoir computing (RC) for a range of classification and prediction tasks. Here we compare two photonic platforms that owe their computational nonlinearity to an optically injected semiconductor laser and to the optical transmission function of a Mach-Zehnder modulator, respectively. We numerically compare these platforms in a delay-based reservoir computing framework, in particular exploring their ability to perform equalization tasks on nonlinearly distorted signals at the output of a fiber-optic transmission line. Although the non-linear processing provided by the two systems is different, both produce a substantial reduction of the bit-error-rate (BER) for such signals of up to several orders of magnitude. We show that the obtained equalization performance depends significantly on the operating conditions of the physical systems, the size of the reservoir and the output layer training method.
引用
收藏
页数:9
相关论文
共 50 条
  • [1] Micro-Ring Resonator Based Photonic Reservoir Computing for PAM Equalization
    Li, Shi
    Dev, Sourav
    Kuehl, Sebastian
    Jamshidi, Kambiz
    Pachnicke, Stephan
    IEEE PHOTONICS TECHNOLOGY LETTERS, 2021, 33 (18) : 978 - 981
  • [2] Integrated Silicon Photonic Reservoir Computing With PSO Training Algorithm for Fiber Communication Channel Equalization
    Zuo, Xiaoyan
    Pei, Li
    Bai, Bing
    Wang, Jianshuai
    Zheng, Jingjing
    Ning, Tigang
    Dong, Fei
    Zhao, Zilun
    JOURNAL OF LIGHTWAVE TECHNOLOGY, 2023, 41 (18) : 5841 - 5850
  • [3] Advances in photonic reservoir computing
    Van der Sande, Guy
    Brunner, Daniel
    Soriano, Miguel C.
    NANOPHOTONICS, 2017, 6 (03) : 561 - 576
  • [4] Photonic Reservoir Computing for Wavelength Multiplexed Nonlinear Fiber Distortion Mitigation
    Gooskens, Emmanuel
    Sackesyn, Stijn
    Masaad, Sarah
    Dambre, Joni
    Bienstman, Peter
    2023 IEEE SILICON PHOTONICS CONFERENCE, SIPHOTONICS, 2023,
  • [5] Coherent all Optical Reservoir Computing for Equalization of Impairments in Coherent Fiber Optic Communication Systems
    Kumar, Shiva
    Maghrabi, Mahmoud M. T.
    Bakr, Mohamed H.
    Hirooka, Toshihiko
    Nakazawa, Masataka
    IEEE PHOTONICS JOURNAL, 2024, 16 (05):
  • [6] Photonic Reservoir Computing: a new approach to optical information processing
    Vandoorne, Kristof
    Fiers, Martin
    Verstraeten, David
    Schrauwen, Benjamin
    Dambre, Joni
    Bienstman, Peter
    PHOTONICS NORTH 2010, 2010, 7750
  • [7] Coherent all-optical reservoir computing for nonlinear equalization in long-haul optical fiber communication systems
    Peng, Guanju
    Liu, Yaping
    Li, Zheng
    Zhu, Kunpeng
    Yang, Zhiqun
    Li, Jianping
    Zhang, Shigui
    Huang, Zhanhua
    Zhang, Lin
    OPTICS AND LASER TECHNOLOGY, 2024, 174
  • [8] Photonic reservoir computing with a silica microsphere cavity
    Xu, Junwei
    Zhao, Tong
    Chang, Pengfa
    Wang, Chen
    Wang, Anbang
    OPTICS LETTERS, 2023, 48 (14) : 3653 - 3656
  • [9] Photonic neuromorphic information processing and reservoir computing
    Lugnan, A.
    Katumba, A.
    Laporte, F.
    Freiberger, M.
    Sackesyn, S.
    Ma, C.
    Gooskens, E.
    Dambre, J.
    Bienstman, P.
    APL PHOTONICS, 2020, 5 (02)
  • [10] Advances in Photonic Reservoir Computing on an Integrated Platform
    Vandoorne, Kristof
    Fiers, Martin
    Van Vaerenbergh, Thomas
    Verstraeten, David
    Schrauwen, Benjamin
    Dambre, Joni
    Bienstman, Peter
    2011 13TH INTERNATIONAL CONFERENCE ON TRANSPARENT OPTICAL NETWORKS (ICTON), 2011,