Automatic smoothing parameter selection in non-parametric models for longitudinal data
被引:0
作者:
Berhane, K
论文数: 0引用数: 0
h-index: 0
机构:
Univ Pittsburgh, Dept Family Med & Clin Epidemiol, Pittsburgh, PA 15261 USAUniv Pittsburgh, Dept Family Med & Clin Epidemiol, Pittsburgh, PA 15261 USA
Berhane, K
[1
]
Rao, JS
论文数: 0引用数: 0
h-index: 0
机构:Univ Pittsburgh, Dept Family Med & Clin Epidemiol, Pittsburgh, PA 15261 USA
Rao, JS
机构:
[1] Univ Pittsburgh, Dept Family Med & Clin Epidemiol, Pittsburgh, PA 15261 USA
[2] Univ Pittsburgh, Dept Biostat, Pittsburgh, PA 15261 USA
[3] Cleveland Clin Fdn, Dept Biostat, Cleveland, OH 44195 USA
来源:
APPLIED STOCHASTIC MODELS AND DATA ANALYSIS
|
1997年
/
13卷
/
3-4期
The selection of smoothing parameters by generalized cross-validation (GCV) becomes complicated when dealing with correlated data. In this paper, we develop an automatic algorithm for selection of smoothing parameters in non-parametric longitudinal models by combining the BRUTO algorithm of Hastie (1989) and the modifications to GCV due to Altman (1990) to handle the correlation. The algorithm is detailed and illustrated via analysis of a panic-attack data set. (C) 1998 John Wiley & Sons, Ltd.