Preparation of Nano Aluminium Powder (NAP) using a Thermal Plasma: Process Development and Characterization

被引:11
作者
Pant, Arti [1 ]
Seth, Tanay [2 ]
Raut, Varsha B. [2 ]
Gajbhiye, Vandana Prakash [1 ]
Newale, Shireeshkumar Pralhad [1 ]
Nandi, Amiya Kumar [1 ]
Prasanth, Hima [1 ]
Pandey, Raj Kishore [1 ]
机构
[1] High Energy Mat Res Lab, Pune 411021, Maharashtra, India
[2] Ctr Mat Elect Technol, Off Pashan Rd, Pune 411008, Maharashtra, India
来源
CENTRAL EUROPEAN JOURNAL OF ENERGETIC MATERIALS | 2016年 / 13卷 / 01期
关键词
nano aluminium; thermal plasma; DC arc plasma; RF induction plasma; aluminium content; BET surface area; HR-TEM; CHEMICAL-SYNTHESIS; NANOPARTICLES; EXPLOSION; WIRE; COMBUSTION; STABILITY; BEHAVIOR;
D O I
10.22211/cejem/64964
中图分类号
O69 [应用化学];
学科分类号
081704 ;
摘要
A bottom up approach for the preparation of Nano Aluminium Powder (NAP) using a Transferred Arc Thermal Plasma Reactor (TAPR) is described. The aluminium block is subjected to evaporation by the application of a thermal plasma. The aluminium vapour produced is rapidly quenched to room temperature resulting in crystallization of the aluminium vapour in nano-particulate form. Various process parameters, such as the plasma torch power, reactor pressure and plasma gas composition were optimized. This paper also describes the characterization of NAPs by analytical methods, for the estimation of the Active Aluminium Content (AAC), Total Aluminium Content (TAC), XRD, bulk density, BET surface area, HR-TEM etc. The results are compared with those for samples prepared in other thermal plasma reactors, such as the DC Arc Plasma Reactor (DCAPR) and the RF Induction Thermal Plasma Reactor (RFITPR), and for commercially available NAP samples (ALEX, prepared by the EEW technique).
引用
收藏
页码:53 / 71
页数:19
相关论文
共 51 条
[1]   Thermal stability of nanostructured aluminum powder synthesized by high-energy milling [J].
Abdoli, Hamid ;
Ghanbari, Mohsen ;
Baghshahi, Saeid .
MATERIALS SCIENCE AND ENGINEERING A-STRUCTURAL MATERIALS PROPERTIES MICROSTRUCTURE AND PROCESSING, 2011, 528 (22-23) :6702-6707
[2]  
Bassett J., 1979, Vogel's Textbook of Quantitative Inorganic Analysis, V4th
[3]   Research on the methods to determine metallic aluminum content in aluminum nanoparticles [J].
Chen, Liang ;
Song, Wulin ;
Lv, Jie ;
Chen, Xia ;
Xie, Changsheng .
MATERIALS CHEMISTRY AND PHYSICS, 2010, 120 (2-3) :670-675
[4]   Capping and Passivation of Aluminum Nanoparticles Using Alkyl-Substituted Epoxides [J].
Chung, Stephen W. ;
Guliants, Elena A. ;
Bunker, Christopher E. ;
Hammerstroem, Douglas W. ;
Deng, Yong ;
Burgers, Mark A. ;
Jelliss, Paul A. ;
Buckner, Steven W. .
LANGMUIR, 2009, 25 (16) :8883-8887
[5]   Burning of nano-aluminized composite rocket propellants [J].
De Luca, LT ;
Galfetti, L ;
Severini, F ;
Meda, L ;
Marra, G ;
Vorozhtsov, AB ;
Sedoi, VS ;
Babuk, VA .
COMBUSTION EXPLOSION AND SHOCK WAVES, 2005, 41 (06) :680-692
[6]   Metal-based reactive nanomaterials [J].
Dreizin, Edward L. .
PROGRESS IN ENERGY AND COMBUSTION SCIENCE, 2009, 35 (02) :141-167
[7]  
Eckert J., 1993, Nanostructured Materials, V2, P407, DOI 10.1016/0965-9773(93)90183-C
[8]   Synthesis and Characterization of Agglomerated Coarse Al Powders Comprising Nanoparticles by Low Energy Ball Milling Process [J].
Eom, Nusia ;
Bhuiyan, Mahedi Hasan ;
Kim, Taek-Soo ;
Hong, Soon-Jik .
MATERIALS TRANSACTIONS, 2011, 52 (08) :1674-1678
[9]   The Effect of Surfactant on Colloidal Stability, Oxidation and Optical Properties of Aluminum Nanoparticles Prepared via Dc Arc Discharge in Water [J].
Faraji, M. ;
Poursalehi, R. ;
Aliofkhazraei, M. .
5TH INTERNATIONAL BIENNIAL CONFERENCE ON ULTRAFINE GRAINED AND NANOSTRUCTURED MATERIALS, UFGNSM15, 2015, 11 :684-688
[10]   Application of cerimetric methods for determining the metallic aluminum content in ultrafine aluminum powders [J].
Fedotova, Tatyana D. ;
Glotov, Oleg G. ;
Zarko, Vladimir E. .
PROPELLANTS EXPLOSIVES PYROTECHNICS, 2007, 32 (02) :160-164