THE SUBCONVEXITY PROBLEM FOR GL2

被引:0
作者
Michel, Philippe [1 ,2 ]
Venkatesh, Akshay [3 ]
机构
[1] Ecole Polytech Fed Lausanne, Lausanne, Switzerland
[2] Univ Montpellier 2, Montpellier, France
[3] Stanford Univ, Stanford, CA 94305 USA
来源
PUBLICATIONS MATHEMATIQUES DE L'IHES, NO 111 | 2010年 / 111卷
基金
美国国家科学基金会;
关键词
SELBERG L-FUNCTIONS; RANKIN-SELBERG; TRILINEAR FORMS; AUTOMORPHIC-FORMS; CENTRAL VALUES; HYBRID BOUNDS; REPRESENTATIONS; EQUIDISTRIBUTION; COEFFICIENTS; CONDUCTOR;
D O I
暂无
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
Generalizing and unifying prior results, we solve the subconvexity problem for the L-functions of GL(1) and GL(2) automorphic representations over a fixed number field, uniformly in all aspects. A novel feature of die present method is the softness of our arguments; this is largely due to a consistent use of canonically normalized period relations, such as those supplied by the work of Waldspurger and Ichino-Ikeda.
引用
收藏
页码:171 / 271
页数:101
相关论文
共 69 条
[1]  
[Anonymous], 1974, Funkcional. Anal. i Prilozen.
[2]  
ARTHUR J, 1980, COMPOS MATH, V40, P87
[3]  
Arthur James., 1979, Automorphic forms, representations and L-functions, VXXXIII., P253
[4]   Sobolev norms of automorphic functionals [J].
Bernstein, J ;
Reznikov, A .
INTERNATIONAL MATHEMATICS RESEARCH NOTICES, 2002, 2002 (40) :2155-2174
[5]   Rankin-Selberg L-functions on the critical line [J].
Blomer, V .
MANUSCRIPTA MATHEMATICA, 2005, 117 (02) :111-133
[6]   Hybrid bounds for twisted L-functions [J].
Blomer, Valentin ;
Harcos, Gergely .
JOURNAL FUR DIE REINE UND ANGEWANDTE MATHEMATIK, 2008, 621 :53-79
[7]   The spectral decomposition of shifted convolution sums [J].
Blomer, Valentin ;
Harcos, Gergely .
DUKE MATHEMATICAL JOURNAL, 2008, 144 (02) :321-339
[8]   Bounds for modular L-functions in the level aspect [J].
Blomer, Valentin ;
Harcos, Gergely ;
Michel, Philippe .
ANNALES SCIENTIFIQUES DE L ECOLE NORMALE SUPERIEURE, 2007, 40 (05) :697-740
[9]  
Burgess D. A., 1963, Proc. Lond. Math. Soc, V3, P524
[10]   Restrictions of the Laplace-Beltrami eigenfunctions to submanifolds [J].
Burq, N. ;
Gerard, P. ;
Tzvetkov, N. .
DUKE MATHEMATICAL JOURNAL, 2007, 138 (03) :445-486