Solvent/gelator interactions and supramolecular structure of gel fibers in cyclic bis-urea/primary alcohol organogels

被引:126
作者
Jeong, Y
Hanabusa, K
Masunaga, H
Akiba, I
Miyoshi, K
Sakurai, S
Sakurai, K
机构
[1] Univ Kitakyushu, Dept Chem Proc & Environm, Wakamatsu Ku, Kitakyushu, Fukuoka 8080135, Japan
[2] Shinshu Univ, Fac Text Sci & Technol, Dept Funct Polymer Sci, Ueda, Nagano 3868567, Japan
[3] Shinshu Univ, Grad Sch Sci & Technol, Ueda, Nagano 3868567, Japan
[4] Kyoto Inst Technol, Dept Polymer Sci & Engn, Matsugasaki, Kyoto 6068585, Japan
关键词
D O I
10.1021/la047538t
中图分类号
O6 [化学];
学科分类号
0703 ;
摘要
An organogel system consisting of trans-(1S,2S)-bis(ureidododecyl)cyclohexane (SS-BUC) and a series of primary alcohols was explored with optical polarizing microscopy (OPM), electron microscopy, circular dichroism (CD), wide-angle X-ray scattering (WAXS), and synchrotron small-angle X-ray scattering (SAXS). OPM, SAXS, and especially WAXS showed that the gel fiber of SS-BUC/methanol gels essentially consists of SS-BUC crystal itself. SAXS showed that the SS-BUC crystal in the gel takes a lamella with a domain spacing of 5.2 nm. When we left the gel at room temperature, the spacing decreased to 3.1 nm after several months. This distance change may correspond to the structural transition from a double-layer structure to an intercalated-layer structure, which was proposed by Feringa et al. (Chem.-Eur. J. 1999, 5, 937-950) as a possible arrangement of the molecular packing. When the gels in ethanol, propanol, butanol, or octanol were examined, they never showed crystalline peaks in WAXS and SAXS, indicating the amorphous nature of the gels. With increasing the alkyl chain length from ethanol to octanol, dramatic changes were observed in the CD spectrum in the 200-500-nm range. Because these CD changes are correlated to the absorbance of urea, those can be considered as the evidence that the solvents strongly relate to the spatial arrangement between the adjacent urea groups. For the amorphous gels, the cross-sectional correlation function [gamma(C)(u)] was directly obtained by the inverse Hankel transform of the SAXS data. The value of gamma(C)(u) for the gels is decreased with increasing u (distance between the two scattering bodies, see eq 5). Furthermore, it more rapidly decreases than that of the rigid cylinder model. This feature can be explained by the speculation that many solvent molecules permeate into the SS-BUC fiber. There was a clear difference between ethanol and the other gels, indicating that the solvents with a longer alkyl chain give the more permeated and diffused fiber. This permeated fiber (i.e., wet fiber) can rationalize the dramatic CD change, by presuming that the permeated solvent molecules alter the molecular stacking form.
引用
收藏
页码:586 / 594
页数:9
相关论文
共 41 条
[21]  
Murata K., 1991, CHEM COMMUN, P1715
[22]  
Oda R, 1998, ANGEW CHEM INT EDIT, V37, P2689, DOI 10.1002/(SICI)1521-3773(19981016)37:19<2689::AID-ANIE2689>3.0.CO
[23]  
2-Z
[24]  
Roe, 2000, TOPICS POLYM SCI
[25]   Supramolecular structure of a sugar-appended organogelator explored with synchrotron X-ray small-angle scattering [J].
Sakurai, K ;
Jeong, Y ;
Koumoto, K ;
Friggeri, A ;
Gronwald, O ;
Sakurai, S ;
Okamoto, S ;
Inoue, K ;
Shinkai, S .
LANGMUIR, 2003, 19 (20) :8211-8217
[26]   Organogelation properties of a series of oligoamides [J].
Schmidt, R ;
Schmutz, M ;
Michel, M ;
Decher, G ;
Mésini, PJ .
LANGMUIR, 2002, 18 (15) :5668-5672
[27]   New synthetic oligoamide gelators:: Structural study by X-ray and neutron scattering [J].
Schmidt, R ;
Schmutz, M ;
Mathis, A ;
Decher, G ;
Rawiso, M ;
Mésini, PJ .
LANGMUIR, 2002, 18 (19) :7167-7173
[28]  
Schultz JM., 2001, POLYM CRYSTALLIZATIO
[29]   Molecular rods in a zinc(II) porphyrin/cyclohexane physical gel: Neutron and X-ray scattering characterizations [J].
Terech, P ;
Gebel, G ;
Ramasseul, R .
LANGMUIR, 1996, 12 (18) :4321-4323
[30]   STRUCTURES OF ORGANOGELS BASED UPON CHOLESTERYL 4-(2-ANTHRYLOXY)BUTANOATE, A HIGHLY EFFICIENT LUMINESCING GELATOR - NEUTRON AND X-RAY SMALL-ANGLE SCATTERING INVESTIGATIONS [J].
TERECH, P ;
FURMAN, I ;
WEISS, RG .
JOURNAL OF PHYSICAL CHEMISTRY, 1995, 99 (23) :9558-9566