A simple and fast secondary structure prediction method using hidden neural networks

被引:204
作者
Lin, K
Simossis, VA
Taylor, WR
Heringa, J
机构
[1] Natl Inst Med Res, Div Math Biol, London NW7 1AA, England
[2] Vrije Univ Amsterdam, Fac Sci, Bioinformat Sect, NL-1081 HV Amsterdam, Netherlands
[3] Vrije Univ Amsterdam, Fac Sci, Ctr Integrat Bioinformat, NL-1081 HV Amsterdam, Netherlands
[4] Vrije Univ Amsterdam, Fac Earth & Life Sci, NL-1081 HV Amsterdam, Netherlands
基金
英国医学研究理事会;
关键词
D O I
10.1093/bioinformatics/bth487
中图分类号
Q5 [生物化学];
学科分类号
071010 ; 081704 ;
摘要
Motivation: In this paper, we present a secondary structure prediction method YASPIN that unlike the current state-of-the-art methods utilizes a single neural network for predicting the secondary structure elements in a 7-state local structure scheme and then optimizes the output using a hidden Markov model, which results in providing more information for the prediction. Results: YASPIN was compared with the current top-performing secondary structure prediction methods, such as PHDpsi, PROFsec, SSPro2, JNET and PSIPRED. The overall prediction accuracy on the independent EVA5 sequence set is comparable with that of the top performers, according to the Q3, SOV and Matthew's correlations accuracy measures. YASPIN shows the highest accuracy in terms of Q3 and SOV scores for strand prediction.
引用
收藏
页码:152 / 159
页数:8
相关论文
共 35 条
  • [1] Simple consensus procedures are effective and sufficient in secondary structure prediction
    Albrecht, M
    Tosatto, SCE
    Lengauer, T
    Valle, G
    [J]. PROTEIN ENGINEERING, 2003, 16 (07): : 459 - 462
  • [2] Gapped BLAST and PSI-BLAST: a new generation of protein database search programs
    Altschul, SF
    Madden, TL
    Schaffer, AA
    Zhang, JH
    Zhang, Z
    Miller, W
    Lipman, DJ
    [J]. NUCLEIC ACIDS RESEARCH, 1997, 25 (17) : 3389 - 3402
  • [3] Iterated profile searches with PSI-BLAST - a tool for discovery in protein databases
    Altschul, SF
    Koonin, EV
    [J]. TRENDS IN BIOCHEMICAL SCIENCES, 1998, 23 (11) : 444 - 447
  • [4] Bishop C. M., 1996, Neural networks for pattern recognition
  • [5] The ASTRAL compendium for protein structure and sequence analysis
    Brenner, SE
    Koehl, P
    Levitt, R
    [J]. NUCLEIC ACIDS RESEARCH, 2000, 28 (01) : 254 - 256
  • [6] Prediction of local structure in proteins using a library of sequence-structure motifs
    Bystroff, C
    Baker, D
    [J]. JOURNAL OF MOLECULAR BIOLOGY, 1998, 281 (03) : 565 - 577
  • [7] HMMSTR: a hidden Markov model for local sequence-structure correlations in proteins
    Bystroff, C
    Thorsson, V
    Baker, D
    [J]. JOURNAL OF MOLECULAR BIOLOGY, 2000, 301 (01) : 173 - 190
  • [8] Cuff JA, 2000, PROTEINS, V40, P502, DOI 10.1002/1097-0134(20000815)40:3<502::AID-PROT170>3.0.CO
  • [9] 2-Q
  • [10] Durbin R., 1998, Biological sequence analysis: Probabilistic models of proteins and nucleic acids