Maximally non-abelian vortices from self-dual Yang-Mills fields

被引:11
作者
Manton, Nicholas S. [1 ]
Sakai, Norisuke [2 ]
机构
[1] Univ Cambridge, Dept Appl Math & Theoret Phys, Cambridge CB3 0WA, England
[2] Tokyo Womans Christian Univ, Dept Math, Tokyo 1678585, Japan
关键词
Non-abelian vortices; Self-dual Yang-Mills fields; Dimensional reduction; Master equations; Hyperbolic vortices; SPHERICALLY SYMMETRIC EQUATIONS; GAUGE; SPACE;
D O I
10.1016/j.physletb.2010.03.017
中图分类号
P1 [天文学];
学科分类号
0704 ;
摘要
A particular dimensional reduction of SU(2N) Yang-Mills theory on Sigma x S-2, with Sigma a Riemann surface, yields an S(U(N) x U(N)) gauge theory on Sigma, with a matrix Higgs field. The SU(2N) self-dual Yang-Mills equations reduce to Bogomolny equations for vortices on Sigma. These equations are formally integrable if Sigma is the hyperbolic plane, and we present a subclass of solutions. (C) 2010 Elsevier B.V. All rights reserved.
引用
收藏
页码:395 / 399
页数:5
相关论文
共 20 条
[1]  
[Anonymous], 1958, NAGOYA MATH J
[2]   Nonabelian superconductors:: vortices and confinement in N=2 SQCD [J].
Auzzi, R ;
Bolognesi, S ;
Evslin, J ;
Konishi, K ;
Yung, A .
NUCLEAR PHYSICS B, 2003, 673 (1-2) :187-216
[3]  
BAIS FA, 1978, PHYS REV D, V18, P561, DOI 10.1103/PhysRevD.18.561
[4]   Moduli space of non-Abelian vortices [J].
Eto, M ;
Isozumi, Y ;
Nitta, M ;
Ohashi, K ;
Sakai, N .
PHYSICAL REVIEW LETTERS, 2006, 96 (16)
[5]   Solitons in the Higgs phase: the moduli matrix approach [J].
Eto, Minoru ;
Isozumi, Youichi ;
Nitta, Muneto ;
Ohashi, Keisuke ;
Sakai, Norisuke .
JOURNAL OF PHYSICS A-MATHEMATICAL AND GENERAL, 2006, 39 (26) :R315-R392
[6]   Multiple layer structure of non-Abelian vortex [J].
Eto, Minoru ;
Fujimori, Toshiaki ;
Nagashima, Takayuki ;
Nitta, Muneto ;
Ohashi, Keisuke ;
Sakai, Norisuke .
PHYSICS LETTERS B, 2009, 678 (02) :254-258
[7]   SPACE-TIME SYMMETRIES IN GAUGE-THEORIES [J].
FORGACS, P ;
MANTON, NS .
COMMUNICATIONS IN MATHEMATICAL PHYSICS, 1980, 72 (01) :15-35
[8]   INVARIANT CONNECTIONS AND VORTICES [J].
GARCIAPRADA, O .
COMMUNICATIONS IN MATHEMATICAL PHYSICS, 1993, 156 (03) :527-546
[9]   Vortices, instantons and branes [J].
Hanany, A ;
Tong, D .
JOURNAL OF HIGH ENERGY PHYSICS, 2003, (07) :871-898
[10]   REPRESENTATION-THEORY AND INTEGRATION OF NON-LINEAR SPHERICALLY SYMMETRIC EQUATIONS TO GAUGE-THEORIES [J].
LEZNOV, AN ;
SAVELIEV, MV .
COMMUNICATIONS IN MATHEMATICAL PHYSICS, 1980, 74 (02) :111-118