Discrete dynamical systems over double cross-product Lie groupoids

被引:7
作者
Esen, Ogul [1 ]
Sutlu, Serkan [2 ]
机构
[1] Gebze Tech Univ, Dept Math, TR-41400 Gebze, Turkey
[2] Isik Univ, Dept Math, TR-34980 Sile, Turkey
关键词
Discrete dynamics; Lie groupoids; matched pairs; double cross product; MATCHED PAIRS; LAGRANGIAN MECHANICS; HOPF-ALGEBRAS; EULER-POINCARE; BICROSSPRODUCT; REDUCTION; SYMMETRY;
D O I
10.1142/S0219887821500572
中图分类号
O4 [物理学];
学科分类号
0702 ;
摘要
Discrete Euler-Lagrange equations are studied over double cross product Lie groupoids. As such, a geometric framework for the local analysis of a discrete dynamical system is established. The arguments are elucidated on the local discrete dynamics of a gauge groupoid. The discrete Elroy's beanie is studied as a physical example.
引用
收藏
页数:40
相关论文
共 3 条
  • [1] Discrete nonholonomic Lagrangian systems on Lie groupoids
    Iglesias, David
    Marrero, Juan C.
    de Diego, David Martin
    Martinez, Eduardo
    JOURNAL OF NONLINEAR SCIENCE, 2008, 18 (03) : 221 - 276
  • [2] Discrete Nonholonomic Lagrangian Systems on Lie Groupoids
    David Iglesias
    Juan C. Marrero
    David Martín de Diego
    Eduardo Martínez
    Journal of Nonlinear Science, 2008, 18 : 221 - 276
  • [3] Reduction of discrete dynamical systems over graphs
    Mortveit, HS
    Reidys, CM
    ADVANCES IN COMPLEX SYSTEMS, 2004, 7 (01): : 1 - 20