A second-order pseudo-transient method for steady-state problems

被引:8
作者
Luo, Xin-long [1 ,2 ]
机构
[1] Beijing Univ Posts & Telecommun, Sch Informat & Telecommun Engn, Beijing 100876, Peoples R China
[2] Minist Informat Ind, Key Lab Informat Proc & Intelligent Technol, Beijing 100876, Peoples R China
关键词
Pseudo-transient continuation; Linear conservation law; Nonlinear equations; CONVERGENCE ANALYSIS; CONSERVATION-LAWS; SYSTEMS; ODES;
D O I
10.1016/j.amc.2009.12.029
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
This article gives a second pseudo-transient method for a special system of nonlinear equations, which arises from chemical reaction rate equations. This method uses a special second-order Rosenbrock method as the discrete difference scheme, which satisfies a linear conservation law. Moreover, it adaptively adjusts the time step in inverse proportion to an arithmetic mean of the current residual and the previous residual at every iteration step. For a singular system of nonlinear equations, under some standard assumptions, local convergence of the new method is addressed. Finally, some promise numerical results are also reported. (C) 2009 Elsevier Inc. All rights reserved.
引用
收藏
页码:1752 / 1762
页数:11
相关论文
共 44 条
  • [1] Bai ZZ, 2002, J COMPUT MATH, V20, P437
  • [2] SOME EFFECTIVE METHODS FOR UNCONSTRAINED OPTIMIZATION BASED ON THE SOLUTION OF SYSTEMS OF ORDINARY DIFFERENTIAL-EQUATIONS
    BROWN, AA
    BARTHOLOMEWBIGGS, MC
    [J]. JOURNAL OF OPTIMIZATION THEORY AND APPLICATIONS, 1989, 62 (02) : 211 - 224
  • [3] Pseudotransient continuation and differential-algebraic equations
    Coffey, TS
    Kelley, CT
    Keyes, DE
    [J]. SIAM JOURNAL ON SCIENTIFIC COMPUTING, 2003, 25 (02) : 553 - 569
  • [4] Conn A. R., 2000, MPS SIAM SERIES OPTI
  • [5] Deuflhard P., 2004, Newton Methods for Nonlinear Problems
  • [6] DEUFLHARD P, 2002, 0214 KONR ZUS ZENTR
  • [7] Enright W. H., 1975, BIT (Nordisk Tidskrift for Informationsbehandling), V15, P10, DOI 10.1007/BF01932994
  • [8] Evtushenko Y.G., 1985, Numerical Optimization Techniques
  • [9] On the quadratic convergence of the Levenberg-Marquardt method without nonsingularity assumption
    Fan, JY
    Yuan, YX
    [J]. COMPUTING, 2005, 74 (01) : 23 - 39
  • [10] GEAR CW, 1971, NUMERICAL INITIAL VA