The extended Thomas-Fermi kinetic energy density functional with position-dependent effective mass in one dimension

被引:33
作者
Bencheikh, K [1 ]
Berkane, K [1 ]
Bouizane, S [1 ]
机构
[1] Univ Setif, Lab Phys Ouant & Syst Dynam, Dept Phys, Setif 19000, Algeria
来源
JOURNAL OF PHYSICS A-MATHEMATICAL AND GENERAL | 2004年 / 37卷 / 45期
关键词
D O I
10.1088/0305-4470/37/45/001
中图分类号
O4 [物理学];
学科分类号
0702 ;
摘要
The point canonical transformations map the Schrodinger equation with constant mass to a wave equation with a position-dependent effective mass. Using such a technique we derive, for a one-dimensional inhomogeneous system of noninteracting fermions with density p(x) and spatially dependent effective mass distribution m(x), the semiclassical kinetic energy density functional tau(p) in the so-called extended Thomas-Fermi model up to order h(2). For a given position-dependent mass, we compare numerically the total semiclassical kinetic energy with its exact quantum mechanical counterpart. The qualitative agreement is excellent.
引用
收藏
页码:10719 / 10725
页数:7
相关论文
共 18 条
[1]  
Alhaidari AD, 2002, PHYS REV A, V66, DOI 10.1103/PhysRevA.66.042116
[2]   Structure and energetics of mixed He-4-He-3 drops [J].
Barranco, M ;
Pi, M ;
Gatica, SM ;
Hernandez, ES ;
Navarro, J .
PHYSICAL REVIEW B, 1997, 56 (14) :8997-9003
[3]  
Bastard G., 1988, WAVE MECH APPL SEMIC
[4]   SELFCONSISTENT SEMICLASSICAL DESCRIPTION OF AVERAGE NUCLEAR PROPERTIES - A LINK BETWEEN MICROSCOPIC AND MACROSCOPIC MODELS [J].
BRACK, M ;
GUET, C ;
HAKANSSON, HB .
PHYSICS REPORTS-REVIEW SECTION OF PHYSICS LETTERS, 1985, 123 (05) :275-364
[5]   Simple analytical particle and kinetic energy densities for a dilute fermionic gas in a d-dimensional harmonic trap [J].
Brack, M ;
van Zyl, BP .
PHYSICAL REVIEW LETTERS, 2001, 86 (08) :1574-1577
[6]  
BRACK M, 2004, COMMUNICATION
[7]  
Brack M., 2003, Semiclassical Physics. Frontiers in Physics, V96
[8]   An exactly soluble Schrodinger equation with smooth position-dependent mass [J].
Dekar, L ;
Chetouani, L ;
Hammann, TF .
JOURNAL OF MATHEMATICAL PHYSICS, 1998, 39 (05) :2551-2563
[9]   Wave function for smooth potential and mass step [J].
Dekar, L ;
Chetouani, L ;
Hammann, TF .
PHYSICAL REVIEW A, 1999, 59 (01) :107-112
[10]  
DESAAVEDRA FA, 1994, PHYS REV B, V50, P4248, DOI 10.1103/PhysRevB.50.4248