AT LEAST RANK 2 IN SEVERAL ELLIPTIC CURVES

被引:0
作者
Kim, Shin-Wook [1 ]
机构
[1] 101-703 Pk Apt, Jeonju 54823, Jeonbuk, South Korea
来源
JP JOURNAL OF ALGEBRA NUMBER THEORY AND APPLICATIONS | 2021年 / 49卷 / 02期
关键词
odd prime; elliptic curves; MORDELL;
D O I
10.17654/NT049020139
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
Denoting by E-3p, E-2p, E-pq and E-2p the elliptic curves y(2) = x(3) + 3px, y(2) = x(3) - 2 px, y(2) = x(3) - pqx and y(2) = x(3) + 2 px, we enumerate their ranks.
引用
收藏
页码:139 / 155
页数:17
相关论文
共 9 条
  • [1] ANTONIEWICZ A., 2005, Universitatis Iagellonicae Acta Mathematica, V43, P21
  • [2] Elliptic curves from Mordell to Diophantus and back
    Brown, E
    Myers, BT
    [J]. AMERICAN MATHEMATICAL MONTHLY, 2002, 109 (07) : 639 - 649
  • [3] Dujella A, 2009, J INTEGER SEQ, V12
  • [4] On the Mordell-Weil group of the elliptic curve y2 = x3 + n
    Fujita, Yasutsugu
    Nara, Tadahisa
    [J]. JOURNAL OF NUMBER THEORY, 2012, 132 (03) : 448 - 466
  • [5] Goto T., 2002, THESIS, P1
  • [6] Kim S.-W., 2016, INT J ALGEBRA, V10, P283, DOI DOI 10.12988/IJA.2016.6428
  • [7] Kim S.-W., 2020, Ax, Int. J. Algebra, V14, P139, DOI [10.12988/ija.2020.91250, DOI 10.12988/IJA.2020.91250]
  • [8] Naskrecki B., 2010, INVOLVE, V3, P297
  • [9] Silverman J. H., 1992, Rational Points on Elliptic Curves, DOI [10.1007/978-1-4757-4252-7, DOI 10.1007/978-1-4757-4252-7]