Randomized Benchmarking of Barrier versus Tilt Control of a Singlet-Triplet Qubit

被引:7
作者
Zhang, Chengxian [1 ,2 ]
Throckmorton, Robert E. [3 ,4 ]
Yang, Xu-Chen [1 ,2 ]
Wang, Xin [1 ,2 ]
Barnes, Edwin [5 ]
Das Sarma, S. [3 ,4 ]
机构
[1] City Univ Hong Kong, Dept Phys & Mat Sci, Tat Chee Ave, Kowloon, Hong Kong, Peoples R China
[2] City Univ Hong Kong, Shenzhen Res Inst, Shenzhen 518057, Guangdong, Peoples R China
[3] Univ Maryland, Condensed Matter Theory Ctr, College Pk, MD 20742 USA
[4] Univ Maryland, Dept Phys, Joint Quantum Inst, College Pk, MD 20742 USA
[5] Virginia Tech, Dept Phys, Blacksburg, VA 24061 USA
基金
中国国家自然科学基金;
关键词
DOT HYBRID QUBIT; QUANTUM-DOT; SPIN QUBIT; SILICON; FIDELITY; COMPUTATION; TOMOGRAPHY;
D O I
10.1103/PhysRevLett.118.216802
中图分类号
O4 [物理学];
学科分类号
0702 ;
摘要
Decoherence due to charge noise is one of the central challenges in using spin qubits in semiconductor quantum dots as a platform for quantum information processing. Recently, it has been experimentally demonstrated in both Si and GaAs singlet-triplet qubits that the effects of charge noise can be suppressed if qubit operations are implemented using symmetric barrier control instead of the standard tilt control. Here, we investigate the key issue of whether the benefits of barrier control persist over the entire set of single-qubit gates by performing randomized benchmarking simulations. We find the surprising result that the improvement afforded by barrier control depends sensitively on the amount of spin noise: for the minimal nuclear spin noise levels present in Si, the coherence time improves by more than 2 orders of magnitude whereas in GaAs, by contrast the coherence time is essentially the same for barrier and tilt control. However, we establish that barrier control becomes beneficial if qubit operations are performed using a new family of composite pulses that reduce gate times by up to 90%. With these optimized pulses, barrier control is the best way to achieve high-fidelity quantum gates in singlet-triplet qubits.
引用
收藏
页数:6
相关论文
共 44 条
  • [1] Barnes E., 2016, PHYS REV B, V93
  • [2] Quantum Manipulation of Two-Electron Spin States in Isolated Double Quantum Dots
    Bertrand, Benoit
    Flentje, Hanno
    Takada, Shintaro
    Yamamoto, Michihisa
    Tarucha, Seigo
    Ludwig, Arne
    Wieck, Andreas D.
    Baeuerle, Christopher
    Meunier, Tristan
    [J]. PHYSICAL REVIEW LETTERS, 2015, 115 (09)
  • [3] Dephasing time of GaAs electron-spin qubits coupled to a nuclear bath exceeding 200 μs
    Bluhm, Hendrik
    Foletti, Sandra
    Neder, Izhar
    Rudner, Mark
    Mahalu, Diana
    Umansky, Vladimir
    Yacoby, Amir
    [J]. NATURE PHYSICS, 2011, 7 (02) : 109 - 113
  • [4] Enhancing the Coherence of a Spin Qubit by Operating it as a Feedback Loop That Controls its Nuclear Spin Bath
    Bluhm, Hendrik
    Foletti, Sandra
    Mahalu, Diana
    Umansky, Vladimir
    Yacoby, Amir
    [J]. PHYSICAL REVIEW LETTERS, 2010, 105 (21)
  • [5] Fidelity of single qubit maps
    Bowdrey, MD
    Oi, DKL
    Short, AJ
    Banaszek, K
    Jones, JA
    [J]. PHYSICS LETTERS A, 2002, 294 (5-6) : 258 - 260
  • [6] Braakman FR, 2013, NAT NANOTECHNOL, V8, P432, DOI [10.1038/nnano.2013.67, 10.1038/NNANO.2013.67]
  • [7] Chuang I. N., 2000, Quantum Computation and Quantum Information
  • [8] Charge Noise Spectroscopy Using Coherent Exchange Oscillations in a Singlet-Triplet Qubit
    Dial, O. E.
    Shulman, M. D.
    Harvey, S. P.
    Bluhm, H.
    Umansky, V.
    Yacoby, A.
    [J]. PHYSICAL REVIEW LETTERS, 2013, 110 (14)
  • [9] Universal quantum computation with the exchange interaction
    DiVincenzo, DP
    Bacon, D
    Kempe, J
    Burkard, G
    Whaley, KB
    [J]. NATURE, 2000, 408 (6810) : 339 - 342
  • [10] Isotopically enhanced triple-quantum-dot qubit
    Eng, Kevin
    Ladd, Thaddeus D.
    Smith, Aaron
    Borselli, Matthew G.
    Kiselev, Andrey A.
    Fong, Bryan H.
    Holabird, Kevin S.
    Hazard, Thomas M.
    Huang, Biqin
    Deelman, Peter W.
    Milosavljevic, Ivan
    Schmitz, Adele E.
    Ross, Richard S.
    Gyure, Mark F.
    Hunter, Andrew T.
    [J]. SCIENCE ADVANCES, 2015, 1 (04):