Emergent Weyl nodes and Fermi arcs in a Floquet Weyl semimetal

被引:42
作者
Bucciantini, Leda [1 ,2 ]
Roy, Sthitadhi [1 ]
Kitamura, Sota [3 ]
Oka, Takashi [1 ,2 ]
机构
[1] Max Planck Inst Phys Komplexer Syst, Nothnitzer Str 38, D-01187 Dresden, Germany
[2] Max Planck Inst Chem Phys Fester Stoffe, Nothnitzer Str 40, D-01187 Dresden, Germany
[3] Univ Tokyo, Dept Phys, Tokyo 1130033, Japan
基金
日本科学技术振兴机构;
关键词
SURFACE; STATES; PHASE; TRANSITION; DISCOVERY; INSULATOR; BLOCH; 3D;
D O I
10.1103/PhysRevB.96.041126
中图分类号
T [工业技术];
学科分类号
08 ;
摘要
When a Dirac semimetal is subject to a circularly polarized laser, it is predicted that the Dirac cone splits into two Weyl nodes and a nonequilibrium transient state called the Floquet Weyl semimetal is realized. We focus on the previously unexplored low-frequency regime, where the upper and lower Dirac bands resonantly couple with each other through multiphoton processes, which is a realistic situation in solid-state ultrafast pump-probe experiments. We find a series of new Weyl nodes emerging in pairs when the Floquet replica bands hybridize with each other. The nature of the Floquet Weyl semimetal with regard to the number, locations, and monopole charges of these Weyl nodes is highly tunable with the amplitude and frequency of the light. We derive an effective low-energy theory using Brillouin-Wigner expansion and further regularize the theory on a cubic lattice. The monopole charges obtained from the low-energy Hamiltonian can be reconciled with the number of Fermi arcs on the lattice, which we find numerically.
引用
收藏
页数:7
相关论文
共 78 条
[1]  
[Anonymous], 2014, SOLID STATE PHYS
[2]   Negative magnetoresistance without well-defined chirality in the Weyl semimetal TaP [J].
Arnold, Frank ;
Shekhar, Chandra ;
Wu, Shu-Chun ;
Sun, Yan ;
dos Reis, Ricardo Donizeth ;
Kumar, Nitesh ;
Naumann, Marcel ;
Ajeesh, Mukkattu O. ;
Schmidt, Marcus ;
Grushin, Adolfo G. ;
Bardarson, Jens H. ;
Baenitz, Michael ;
Sokolov, Dmitry ;
Borrmann, Horst ;
Nicklas, Michael ;
Felser, Claudia ;
Hassinger, Elena ;
Yan, Binghai .
NATURE COMMUNICATIONS, 2016, 7
[3]   EXACT DECIMATION APPROACH TO THE GREEN-FUNCTIONS OF THE FIBONACCI-CHAIN QUASICRYSTAL [J].
ASHRAFF, JA ;
STINCHCOMBE, RB .
PHYSICAL REVIEW B, 1988, 37 (10) :5723-5729
[4]   Visualizing the chiral anomaly in Dirac and Weyl semimetals with photoemission spectroscopy [J].
Behrends, Jan ;
Grushin, Adolfo G. ;
Ojanen, Teemu ;
Bardarson, Jens H. .
PHYSICAL REVIEW B, 2016, 93 (07)
[5]   The Magnus expansion and some of its applications [J].
Blanes, S. ;
Casas, F. ;
Oteo, J. A. ;
Ros, J. .
PHYSICS REPORTS-REVIEW SECTION OF PHYSICS LETTERS, 2009, 470 (5-6) :151-238
[6]   Negative longitudinal magnetoresistance in Dirac and Weyl metals [J].
Burkov, A. A. .
PHYSICAL REVIEW B, 2015, 91 (24)
[7]   Weyl Semimetal in a Topological Insulator Multilayer [J].
Burkov, A. A. ;
Balents, Leon .
PHYSICAL REVIEW LETTERS, 2011, 107 (12)
[8]   Floquet topological insulators [J].
Cayssol, Jerome ;
Dora, Balazs ;
Simon, Ferenc ;
Moessner, Roderich .
PHYSICA STATUS SOLIDI-RAPID RESEARCH LETTERS, 2013, 7 (1-2) :101-108
[9]   When Chiral Photons Meet Chiral Fermions: Photoinduced Anomalous Hall Effects in Weyl Semimetals [J].
Chan, Ching-Kit ;
Lee, Patrick A. ;
Burch, Kenneth S. ;
Han, Jung Hoon ;
Ran, Ying .
PHYSICAL REVIEW LETTERS, 2016, 116 (02)
[10]   Dynamical preparation of Floquet Chern insulators [J].
D'Alessio, Luca ;
Rigol, Marcos .
NATURE COMMUNICATIONS, 2015, 6