A review on algebraic extensions in general relativity

被引:4
作者
Hess, Peter O. [1 ,2 ]
机构
[1] Univ Nacl Autonoma Mexico, Inst Ciencias Nucl, Ciudad De Mexico, Mexico
[2] JW von Goethe Univ, Frankfurt Inst Adv Studies, Hessen, Germany
关键词
general relativity; algebraic extensions; PSEUDO-COMPLEX THEORY; NEUTRON-STARS; MAXIMAL ACCELERATION; PHASE-TRANSITIONS; EHT OBSERVATIONS; GRAVITY; PREDICTIONS; FIELD; MASS;
D O I
10.1002/asna.202113990
中图分类号
P1 [天文学];
学科分类号
0704 ;
摘要
A brief review on algebraic extensions of general relativity is presented. After a short summary of first attempts by Max Born and Albert Einstein, all possible algebraic extensions will be discussed, with the pseudo-complex (pc) extension left as the only viable one, because it does not contain ghost solutions. Also some metric extensions are presented, such as the non-symmetric gravitation theory and the Finsler metric. Some predictions of the pc extension are discussed, such as the structure of light emission of an accretion disk around a black hole, the redshift at the surface of a compact star as a function in the azimuthal angle, and whether there is an upper limit for the mass of a neutron star.
引用
收藏
页码:735 / 744
页数:10
相关论文
共 50 条
  • [1] Alternatives to Einstein's General Relativity Theory
    Hess, P. O.
    PROGRESS IN PARTICLE AND NUCLEAR PHYSICS, 2020, 114
  • [2] Isotropic extensions of the vacuum solutions in general relativity
    Molina, C.
    Martin-Moruno, Prado
    Gonzalez-Diaz, Pedro F.
    PHYSICAL REVIEW D, 2011, 84 (10):
  • [3] Cosmology in time asymmetric extensions of general relativity
    Leon, Genly
    Saridakis, Emmanuel N.
    JOURNAL OF COSMOLOGY AND ASTROPARTICLE PHYSICS, 2015, (11):
  • [4] On Existence of Static Metric Extensions in General Relativity
    Pengzi Miao
    Communications in Mathematical Physics, 2003, 241 : 27 - 46
  • [5] The Cauchy problem in general relativity: an algebraic characterization
    Fatibene, L.
    Garruto, S.
    CLASSICAL AND QUANTUM GRAVITY, 2015, 32 (23)
  • [6] Observational constraints on nonlinear matter extensions of general relativity
    Kolonia, E. -A.
    Martins, C. J. A. P.
    SIXTEENTH MARCEL GROSSMANN MEETING, 2023, : 1935 - 1947
  • [7] The Singularity Theorems of General Relativity and Their Low Regularity Extensions
    Steinbauer R.
    Jahresbericht der Deutschen Mathematiker-Vereinigung, 2023, 125 (2) : 73 - 119
  • [8] Dotted and undotted algebraic spinor fields in general relativity
    de Oliveira, EC
    Rodrigues, WA
    INTERNATIONAL JOURNAL OF MODERN PHYSICS D, 2004, 13 (08): : 1637 - 1659
  • [9] USING GLOBAL POSITIONING SYSTEMS TO TEST EXTENSIONS OF GENERAL RELATIVITY
    Bertolami, Orfeu
    Paramos, Jorge
    INTERNATIONAL JOURNAL OF MODERN PHYSICS D, 2011, 20 (09): : 1617 - 1641
  • [10] General relativity and neutron stars
    Yakovlev, D. G.
    INTERNATIONAL JOURNAL OF MODERN PHYSICS A, 2016, 31 (2-3):