Grassmannian-parameterized solutions to direct-sum polygon and simplex equations

被引:7
作者
Dimakis, Aristophanes [1 ]
Korepanov, Igor G. [2 ]
机构
[1] Univ Aegean, Chios, Greece
[2] Moscow Inst Aviat Technol, Moscow, Russia
关键词
D O I
10.1063/5.0035760
中图分类号
O4 [物理学];
学科分类号
0702 ;
摘要
We consider polygon and simplex equations, of which the simplest nontrivial examples are pentagon (5-gon) and Yang-Baxter (2-simplex), respectively. We examine the general structure of (2n + 1)-gon and 2n-simplex equations in direct sums of vector spaces. Then, we provide a construction for their solutions, parameterized by elements of the Grassmannian Gr(n + 1, 2n + 1).
引用
收藏
页数:17
相关论文
共 19 条
  • [1] Akutsu Y., 1989, Braid Group, Knot Theory and Statistical Mechanics, P151, DOI [10.1142/97898127983500007, DOI 10.1142/97898127983500007]
  • [2] [Anonymous], 2002, Geometry and Topology Monographs
  • [3] [Anonymous], 1994, KNOTS SURFACES
  • [4] Berezin F.A., 1987, MATH PHYS APPL MATH, V9
  • [5] Carter J. S., 1998, MATH SURVEYS MONOGRA, V55
  • [6] Matrix KP: tropical limit and Yang-Baxter maps
    Dimakis, Aristophanes
    Mueller-Hoissen, Folkert
    [J]. LETTERS IN MATHEMATICAL PHYSICS, 2019, 109 (04) : 799 - 827
  • [7] Simplex and Polygon Equations
    Dimakis, Aristophanes
    Mueller-Hoissen, Folkert
    [J]. SYMMETRY INTEGRABILITY AND GEOMETRY-METHODS AND APPLICATIONS, 2015, 11
  • [8] Quasideterminants
    Gelfand, I
    Gelfand, S
    Retakh, V
    Wilson, RL
    [J]. ADVANCES IN MATHEMATICS, 2005, 193 (01) : 56 - 141
  • [9] Permutation-type solutions to the Yang-Baxter and other n-simplex equations
    Hietarinta, J
    [J]. JOURNAL OF PHYSICS A-MATHEMATICAL AND GENERAL, 1997, 30 (13): : 4757 - 4771
  • [10] Kashaev R, 2018, MATRIX BOOK SER, V1, P277