Pearling and helical nanostructures of model protocell membranes

被引:2
|
作者
Chen, Zhidi [1 ,2 ]
Fan, Yaxun [1 ]
Chen, Yao [1 ,3 ]
Penfold, Jeffrey [3 ]
Li, Peixun [3 ]
Wu, Rongliang [4 ]
Wang, Yilin [1 ,2 ]
机构
[1] Chinese Acad Sci, CAS Res Educ Ctr Excellence Mol Sci, Inst Chem,Beijing Natl Lab Mol Sci BNLMS, CAS Key Lab Colloid Interface & Chem Thermodynam, Beijing 100190, Peoples R China
[2] Univ Chinese Acad Sci, Beijing 100049, Peoples R China
[3] Rutherford Appleton Lab, STFC, ISIS, Didcot OX11 0QX, Oxon, England
[4] Donghua Univ, Coll Mat Sci & Engn, State Key Lab Modificat Chem Fibers & Polymer Mat, Shanghai 201620, Peoples R China
基金
中国国家自然科学基金;
关键词
protocell membrane; pearling and helical nanostructures; morphology evolution; biogenic polyamine; amphiphile; self-assembly; LIFE; VESICLES; ORIGIN; GROWTH; AMPHIPHILES; TRANSITIONS; ASSEMBLIES; SURFACTANT; CHEMISTRY; DYNAMICS;
D O I
10.1007/s12274-021-3541-6
中图分类号
O64 [物理化学(理论化学)、化学物理学];
学科分类号
070304 ; 081704 ;
摘要
The diversity of protocell membrane structures is crucial for the regulation of cell activities and indispensable to the origin of life. Prior to the evolution of complex cellular machinery, spontaneous protocell membrane evolution results from the intrinsic physicochemical properties of simple molecules under specific environmental conditions. Here, we report the evolution of the morphology of cell-sized model protocell membranes from giant vesicles to pearling and helical nanostructures, resembling morphologies of eukaryocytes, nostoc, and spirilla. This evolution occurs in a single binary aqueous system composed of an achiral single-chain amphiphile and a biogenic polyamine (spermidine or spermine) upon evaporating water, feeding amphiphiles, or increasing pH in response to various primitive fluctuating conditions. In contrast, nonbiogenic polyamines (triamine, triethylenetetramine, and hexamethyltriethylenetetramine) with slight differences in the number of methylene groups or protonated amine groups do not induce such a kind of evolution. The evolution of the shape transformation strongly relies on the balance between electrostatic attraction and hydrogen bonding, attributed to the odd/even effect of polyamines in the assembly. Strikingly, both pearling and helical structures emerge from multilamellar vesicles undergoing different processes, where the helix shows stronger permeability and encapsulation capability due to its multicompartmentalized structure. Thus, subtle adjustment of weak intramolecular interactions not only yields significant changes in the morphological evolution of protocell membranes but also brings new insights into the natural inevitability of biogenic small molecules.
引用
收藏
页码:659 / 668
页数:10
相关论文
共 50 条
  • [1] Pearling and helical nanostructures of model protocell membranes
    Zhidi Chen
    Yaxun Fan
    Yao Chen
    Jeffrey Penfold
    Peixun Li
    Rongliang Wu
    Yilin Wang
    Nano Research, 2022, 15 : 659 - 668
  • [2] Lipid constituents of model protocell membranes
    Wang, Anna
    Szostak, Jack W.
    EMERGING TOPICS IN LIFE SCIENCES, 2019, 3 (05) : 537 - 542
  • [3] Photochemically driven redox chemistry induces protocell membrane pearling and division
    Zhu, Ting F.
    Adamala, Katarzyna
    Zhang, Na
    Szostak, Jack W.
    PROCEEDINGS OF THE NATIONAL ACADEMY OF SCIENCES OF THE UNITED STATES OF AMERICA, 2012, 109 (25) : 9828 - 9832
  • [4] A Model Protometabolic Pathway across Protocell Membranes Assisted by Photocatalytic Minerals
    Dalai, Punam
    Sahai, Nita
    JOURNAL OF PHYSICAL CHEMISTRY C, 2020, 124 (02) : 1469 - 1477
  • [5] Concentration-Driven Growth of Model Protocell Membranes
    Budin, Itay
    Debnath, Anik
    Szostak, Jack W.
    JOURNAL OF THE AMERICAN CHEMICAL SOCIETY, 2012, 134 (51) : 20812 - 20819
  • [6] Selfishness versus functional cooperation in a stochastic protocell model
    Zintzaras, Elias
    Santos, Mauro
    Szathmary, Eors
    JOURNAL OF THEORETICAL BIOLOGY, 2010, 267 (04) : 605 - 613
  • [7] Electrostatic Localization of RNA to Protocell Membranes by Cationic Hydrophobic Peptides
    Kamat, Neha P.
    Tobe, Sylvia
    Hill, Ian T.
    Szostak, Jack W.
    ANGEWANDTE CHEMIE-INTERNATIONAL EDITION, 2015, 54 (40) : 11735 - 11739
  • [8] Prebiotic Protocell Model Based on Dynamic Protein Membranes Accommodating Anabolic Reactions
    Schreiber, Andreas
    Huber, Matthias C.
    Schiller, Stefan M.
    LANGMUIR, 2019, 35 (29) : 9593 - 9610
  • [9] A Fusion-Growth Protocell Model Based on Vesicle Interactions with Pyrite Particles
    Guo, Dong
    Zhang, Ziyue
    Sun, Jichao
    Zhao, Hui
    Hou, Wanguo
    Du, Na
    MOLECULES, 2024, 29 (11):
  • [10] Autonomous model protocell division driven by molecular replication
    Taylor, J. W.
    Eghtesadi, S. A.
    Points, L. J.
    Liu, T.
    Cronin, L.
    NATURE COMMUNICATIONS, 2017, 8