Atomic N-coordinated cobalt sites within nanomesh graphene as highly efficient electrocatalysts for triiodide reduction in dye-sensitized solar cells

被引:25
作者
Yang, Wang [1 ]
Li, Zihui [1 ]
Xu, Xiuwen [1 ]
Hou, Liqiang [1 ]
Tang, Yushu [1 ]
Deng, Bijian [1 ]
Yang, Fan [1 ]
Wang, Ying [2 ]
Li, Yongfeng [1 ]
机构
[1] China Univ Petr, State Key Lab Heavy Oil Proc, Beijing 102249, Changping, Peoples R China
[2] Chinese Acad Sci, Changchun Inst Appl Chem, State Key Lab Rare Earth Resource Utilizat, Changchun 130022, Jilin, Peoples R China
基金
中国博士后科学基金; 中国国家自然科学基金;
关键词
Nanomesh graphene; Co-N-x-C moieties; Electrocatalyst; Triiodide reduction reaction; Dye-sensitized solar cell; INITIO MOLECULAR-DYNAMICS; METAL-FREE CATHODES; COUNTER ELECTRODES; POROUS GRAPHENE; DOPED GRAPHENE; LOW-COST; PERFORMANCE; NANOPLATELETS; NITROGEN;
D O I
10.1016/j.cej.2018.05.139
中图分类号
X [环境科学、安全科学];
学科分类号
08 ; 0830 ;
摘要
Facile yet rational design of efficient electrocatalyst toward triiodide reduction reaction is a persistent challenge for the practical application of dye-sensitized solar cell (DSSC). Here we propose a protocol for fabricating atomic N-coordinated cobalt sites (Co-N-x-C) within nanomesh graphene frameworks (Co-NMG). The as-synthesized Co-NMG combines the features of atomically dispersed active sites and interconnected mesoporous structure with high porosity, which makes these active sites fully exposed and accessible while facilitating the mass transport of reactants. As a result, the Co-NMG electrocatalysts with substantial active sites and desired porous architectures exhibit high electrocatalytic activity and long-term electrochemical stability. Electrochemical measurements and DFT calculations reveal that the catalytic sites toward the reduction of triiodide mainly derive from the abundant topological defects, nitrogen dopants, and especially the atomic Co-N-x-C moieties. Furthermore, with Co-NMG as counter electrodes (CEs), the DSSCs display a power conversion efficiency of 9.06%, which is higher than that of Pt CEs (7.71%). This work not only provides a promising CE material for DSSC to address the issues associated with Pt catalyst, but also opens up new avenues for developing nanocarbon based catalysts with desired features for other energy-related applications.
引用
收藏
页码:782 / 790
页数:9
相关论文
共 53 条
[1]   1D Co- and N-Doped Hierarchically Porous Carbon Nanotubes Derived from Bimetallic Metal Organic Framework for Efficient Oxygen and Tri-iodide Reduction Reactions [J].
Ahn, Sung Hoon ;
Klein, Michael J. ;
Manthiram, Arumugam .
ADVANCED ENERGY MATERIALS, 2017, 7 (07)
[2]   Co-N doped reduced graphene oxide used as efficient electrocatalyst for dye-sensitized solar cells [J].
Belekoukia, Meltiani ;
Ploumistos, Alexandros ;
Sygellou, Lamprini ;
Nouri, Esmaiel ;
Tasis, Dimitrios ;
Lianos, Panagiotis .
SOLAR ENERGY MATERIALS AND SOLAR CELLS, 2016, 157 :591-598
[3]   PROJECTOR AUGMENTED-WAVE METHOD [J].
BLOCHL, PE .
PHYSICAL REVIEW B, 1994, 50 (24) :17953-17979
[4]   Carbon Nanomaterials for Dye-Sensitized Solar Cell Applications: A Bright Future [J].
Brennan, Lorcan J. ;
Byrne, Michele T. ;
Bari, Mazhar ;
Gun'ko, Yurii K. .
ADVANCED ENERGY MATERIALS, 2011, 1 (04) :472-485
[5]   A new type of transparent and low cost counter-electrode based on platinum nanoparticles for dye-sensitized solar cells [J].
Calogero, Giuseppe ;
Calandra, Pietro ;
Irrera, Alessia ;
Sinopoli, Alessandro ;
Citro, Ilaria ;
Di Marco, Gaetano .
ENERGY & ENVIRONMENTAL SCIENCE, 2011, 4 (05) :1838-1844
[6]  
Chen Y, 2017, ANGEW CHEM, V129, P7041, DOI [10.1002/ange.201702473, DOI 10.1002/ANGE.201702473]
[7]   Bronsted-Evans-Polanyi relation of multistep reactions and volcano curve in heterogeneous catalysis [J].
Cheng, Jun ;
Hu, P. ;
Ellis, Peter ;
French, Sam ;
Kelly, Gordon ;
Lok, C. Martin .
JOURNAL OF PHYSICAL CHEMISTRY C, 2008, 112 (05) :1308-1311
[8]   A Graphene Composite Material with Single Cobalt Active Sites: A Highly Efficient Counter Electrode for Dye-Sensitized Solar Cells [J].
Cui, Xiaoju ;
Xiao, Jianping ;
Wu, Yihui ;
Du, Peipei ;
Si, Rui ;
Yang, Huaixin ;
Tian, Huanfang ;
Li, Jianqi ;
Zhang, Wen-Hua ;
Deng, Dehui ;
Bao, Xinhe .
ANGEWANDTE CHEMIE-INTERNATIONAL EDITION, 2016, 55 (23) :6708-6712
[9]   Pyridinic-Nitrogen-Dominated Graphene Aerogels with Fe-N-C Coordination for Highly Efficient Oxygen Reduction Reaction [J].
Cui, Xiaoyang ;
Yang, Shubin ;
Yan, Xingxu ;
Leng, Jiugou ;
Shuang, Shuang ;
Ajayan, Pulickel M. ;
Zhang, Zhengjun .
ADVANCED FUNCTIONAL MATERIALS, 2016, 26 (31) :5708-5717
[10]   Effect of the thickness of the Pt film coated on a counter electrode on the performance of a dye-sensitized solar cell [J].
Fang, XM ;
Ma, TL ;
Guan, GQ ;
Akiyama, M ;
Kida, T ;
Abe, E .
JOURNAL OF ELECTROANALYTICAL CHEMISTRY, 2004, 570 (02) :257-263