A non-parametric spatial independence test using symbolic entropy

被引:47
|
作者
Lopez, Fernando [3 ]
Matilla-Garcia, Mariano [1 ]
Mur, Jesus [2 ]
Ruiz Marin, Manuel [3 ]
机构
[1] Univ Nacl Educ Distancia, Dpto Econ Cuantitat 1 A, Madrid 28040, Spain
[2] Univ Zaragoza, Dpto Anal Econ, Zaragoza 50005, Spain
[3] Univ Politecn Cartagena, Dpto Metodos Cuantitat & Informat, Cartagena 30201, Spain
关键词
Spatial dependence; Non-parametric test; Entropy; Symbolic dynamics; CLIFF-ORD TEST; ASYMPTOTIC-DISTRIBUTION; BINOMIAL APPROXIMATION; MOMENTS ESTIMATOR; AUTOCORRELATION; DEPENDENCE; LAG;
D O I
10.1016/j.regsciurbeco.2009.11.003
中图分类号
F [经济];
学科分类号
02 ;
摘要
In the present paper, we construct a new, simple, consistent and powerful test for spatial independence, called the SG test, by using the new concept of symbolic entropy as a measure of spatial dependence. The standard asymptotic distribution of the test is an affine transformation of the symbolic entropy under the null hypothesis. The test statistic, with the proposed symbolization procedure, and its standard limit distribution have appealing theoretical properties that guarantee the general applicability of the test. An important aspect is that the test does not require specification of the W matrix and is free of a priori assumptions. We include a Monte Carlo study of our test, in comparison with the well-known Moran's I, the SBDS (de Graaff et al., 2001) and 7 test (Brett and Pinkse, 1997) that are two non-parametric tests, to better appreciate the properties and the behaviour of the new test. Apart from being competitive compared to other tests, results underline the outstanding power of the new test for non-linear dependent spatial processes. (C) 2009 Elsevier B.V. All rights reserved.
引用
收藏
页码:106 / 115
页数:10
相关论文
共 50 条
  • [41] Detecting Dependencies in Sparse, Multivariate Databases Using Probabilistic Programming and Non-parametric Bayes
    Saad, Feras
    Mansinghka, Vikash
    ARTIFICIAL INTELLIGENCE AND STATISTICS, VOL 54, 2017, 54 : 632 - 641
  • [42] Non-parametric estimation of copula based mutual information
    Krishnankutty, Baby Alpettiyil
    Ganapathy, Rajesh
    Sankaran, Paduthol Godan
    COMMUNICATIONS IN STATISTICS-THEORY AND METHODS, 2020, 49 (06) : 1513 - 1527
  • [43] Non-parametric Copula Estimation Under Bivariate Censoring
    Gribkova, Svetlana
    Lopez, Olivier
    SCANDINAVIAN JOURNAL OF STATISTICS, 2015, 42 (04) : 925 - 946
  • [44] Non-parametric estimation of the extropy and the entropy measures based on progressive type-II censored data with testing uniformity
    Hazeb, Raja
    Raqab, M. Z.
    Bayoud, Husam Awni
    JOURNAL OF STATISTICAL COMPUTATION AND SIMULATION, 2021, 91 (11) : 2178 - 2210
  • [45] Analyzing trend and forecast of rainfall and temperature in Valmiki Tiger Reserve, India, using non-parametric test and random forest machine learning algorithm
    Haroon Roshani
    Tamal Kanti Sajjad
    Md Hibjur Saha
    Md Rahaman
    Yatendra Masroor
    Swades Sharma
    Acta Geophysica, 2023, 71 : 531 - 552
  • [46] Analyzing trend and forecast of rainfall and temperature in Valmiki Tiger Reserve, India, using non-parametric test and random forest machine learning algorithm
    Roshani, Haroon
    Sajjad, Haroon
    Saha, Tamal Kanti
    Rahaman, Md Hibjur
    Masroor, Md
    Sharma, Yatendra
    Pal, Swades
    ACTA GEOPHYSICA, 2023, 71 (01) : 531 - 552
  • [47] Non-parametric Bayesian multivariate metaregression: an application in environmental epidemiology
    Sim, Gyuseok
    Kim, Ho
    Zanobetti, Antonella
    Schwartz, Joel
    Chung, Yeonseung
    JOURNAL OF THE ROYAL STATISTICAL SOCIETY SERIES C-APPLIED STATISTICS, 2018, 67 (04) : 881 - 896
  • [48] A Novel Non-Parametric Method for Blind Identification of STBC Codes
    Mohammadkarimi, Mostafa
    Dobre, Octavia A.
    2015 IEEE 14TH CANADIAN WORKSHOP ON INFORMATION THEORY (CWIT), 2015, : 97 - 100
  • [49] Bayesian non-parametric conditional copula estimation of twin data
    Dalla Valle, Luciana
    Leisen, Fabrizio
    Rossini, Luca
    JOURNAL OF THE ROYAL STATISTICAL SOCIETY SERIES C-APPLIED STATISTICS, 2018, 67 (03) : 523 - 548
  • [50] Texture-based echocardiographic segmentation using a non-parametric estimator and an active contour model
    Valdes-Cristerna, R
    Jimenez, JR
    Yanez-Suarez, O
    Lerallut, JF
    Medina, V
    PROCEEDINGS OF THE 26TH ANNUAL INTERNATIONAL CONFERENCE OF THE IEEE ENGINEERING IN MEDICINE AND BIOLOGY SOCIETY, VOLS 1-7, 2004, 26 : 1806 - 1809