A non-parametric spatial independence test using symbolic entropy

被引:47
|
作者
Lopez, Fernando [3 ]
Matilla-Garcia, Mariano [1 ]
Mur, Jesus [2 ]
Ruiz Marin, Manuel [3 ]
机构
[1] Univ Nacl Educ Distancia, Dpto Econ Cuantitat 1 A, Madrid 28040, Spain
[2] Univ Zaragoza, Dpto Anal Econ, Zaragoza 50005, Spain
[3] Univ Politecn Cartagena, Dpto Metodos Cuantitat & Informat, Cartagena 30201, Spain
关键词
Spatial dependence; Non-parametric test; Entropy; Symbolic dynamics; CLIFF-ORD TEST; ASYMPTOTIC-DISTRIBUTION; BINOMIAL APPROXIMATION; MOMENTS ESTIMATOR; AUTOCORRELATION; DEPENDENCE; LAG;
D O I
10.1016/j.regsciurbeco.2009.11.003
中图分类号
F [经济];
学科分类号
02 ;
摘要
In the present paper, we construct a new, simple, consistent and powerful test for spatial independence, called the SG test, by using the new concept of symbolic entropy as a measure of spatial dependence. The standard asymptotic distribution of the test is an affine transformation of the symbolic entropy under the null hypothesis. The test statistic, with the proposed symbolization procedure, and its standard limit distribution have appealing theoretical properties that guarantee the general applicability of the test. An important aspect is that the test does not require specification of the W matrix and is free of a priori assumptions. We include a Monte Carlo study of our test, in comparison with the well-known Moran's I, the SBDS (de Graaff et al., 2001) and 7 test (Brett and Pinkse, 1997) that are two non-parametric tests, to better appreciate the properties and the behaviour of the new test. Apart from being competitive compared to other tests, results underline the outstanding power of the new test for non-linear dependent spatial processes. (C) 2009 Elsevier B.V. All rights reserved.
引用
收藏
页码:106 / 115
页数:10
相关论文
共 50 条
  • [31] Non-Parametric Change-Point Estimation using String Matching Algorithms
    Oliver Johnson
    Dino Sejdinovic
    James Cruise
    Robert Piechocki
    Ayalvadi Ganesh
    Methodology and Computing in Applied Probability, 2014, 16 : 987 - 1008
  • [32] Non-Parametric Change-Point Estimation using String Matching Algorithms
    Johnson, Oliver
    Sejdinovic, Dino
    Cruise, James
    Piechocki, Robert
    Ganesh, Ayalvadi
    METHODOLOGY AND COMPUTING IN APPLIED PROBABILITY, 2014, 16 (04) : 987 - 1008
  • [33] Knowledge representation using non-parametric Bayesian networks for tunneling risk analysis
    Wang Fan
    Li Heng
    Dong Chao
    Ding Lieyun
    RELIABILITY ENGINEERING & SYSTEM SAFETY, 2019, 191
  • [34] Spatial Symbolic Entropy: A Tool for Detecting the Order of Contiguity
    Matilla-Garcia, Mariano
    Ruiz Marin, Manuel
    GEOGRAPHICAL ANALYSIS, 2011, 43 (02) : 228 - 239
  • [35] A non-parametric method to test the statistical significance in rolling window correlations, and applications to ecological time series
    Polanco-Martinez, Josue M.
    Lopez-Martinez, Jose L.
    ECOLOGICAL INFORMATICS, 2021, 64
  • [36] New cellular automata-based image cryptosystem and a novel non-parametric pixel randomness test
    Jeyaram, BalaSuyambu
    Radha, R.
    Raghavan, Rama
    SECURITY AND COMMUNICATION NETWORKS, 2016, 9 (16) : 3365 - 3377
  • [37] Air temperature variability and trend analysis by non-parametric test for Kolkata observatory, West Bengal, India
    Khan, Ansar
    Chatterjee, Soumendu
    Bisai, Dipak
    INDIAN JOURNAL OF GEO-MARINE SCIENCES, 2017, 46 (05) : 966 - 971
  • [38] THE TRIMMED MEAN IN NON-PARAMETRIC REGRESSION FUNCTION ESTIMATION
    Dhar, Subhra Sankar
    Jha, Prashant
    Rakshit, Prabrisha
    THEORY OF PROBABILITY AND MATHEMATICAL STATISTICS, 2022, : 133 - 158
  • [39] Matching as Non-Parametric Preprocessing for the Estimation of Equivalence Scales
    Dudel, Christian
    Garbuszus, Jan Marvin
    Ott, Notburga
    Werding, Martin
    JAHRBUCHER FUR NATIONALOKONOMIE UND STATISTIK, 2017, 237 (02): : 115 - 141
  • [40] Comparison of non-parametric regression functions through their cumulatives
    Scheike, TH
    STATISTICS & PROBABILITY LETTERS, 2000, 46 (01) : 21 - 32