STOCHASTIC NAVIER-STOKES EQUATIONS ARE A COUPLED PROBLEM

被引:0
作者
Rang, Joachim [1 ]
Matthies, Hermann G. [1 ]
机构
[1] TU Braunschweig, Inst Comp Sci, D-38106 Braunschweig, Germany
来源
COMPUTATIONAL METHODS IN MARINE ENGINEERING V (MARINE 2013) | 2013年
关键词
stochastic Galerkin methods; uncertainty quantification; stochastic Finite Elements; Navier-Stokes equations;
D O I
暂无
中图分类号
U6 [水路运输]; P75 [海洋工程];
学科分类号
0814 ; 081505 ; 0824 ; 082401 ;
摘要
In this paper we consider the stochastic incompressible Navier-Stokes equations. For the stochastic discretisation we use a stochastic Galerkin formulation and a polynomial chaos expansion. This approach leads to a huge nonlinear system of equations. We introduce partitioned methods like the Block-Jacobi and the Block-Gauss-Seidel method. These methods have the advantage that the huge nonlinear system is split into smaller systems. Numerical examples illustrate this idea.
引用
收藏
页码:278 / 288
页数:11
相关论文
共 21 条
[1]  
[Anonymous], 1999, CISM COUR L
[2]  
[Anonymous], UNCERTAINTY MODELS M
[3]  
[Anonymous], Probability, Random Variables and Stochastic Processes
[4]  
[Anonymous], 2003, Probability Theory
[5]  
Christakos G., 1992, RANDOM FIELD MODELS
[6]  
Ghanem R., 1991, STOCHASTIC FINITE EL, VVolume 1, P1, DOI [10.1007/978-1-4612-3094-6, DOI 10.1007/978-1-4612-3094-6]
[7]  
Girault V., 2012, Finite Element Methods for NavierStokes Equations: Theory and Algorithms
[8]  
Gresho P., 2000, INCOMPRESSIBLE FLOW, V2
[9]  
Grigoriu M, 2002, STOCHASTIC CALCULUS: APPLICATIONS IN SCIENCE AND ENGINEERING, P1
[10]  
Holden H., 1996, Stochastic Partial Differential Equations