A new variant of Ekeland's variational principle for set-valued maps

被引:9
作者
Huang, XX [1 ]
机构
[1] Chongqing Normal Univ, Dept Math & Comp Sci, Chongqing 400047, Peoples R China
关键词
set-valued map; approximate variational principle; set-valued optimization; necessary optimality condition;
D O I
10.1080/0233193021000058959
中图分类号
C93 [管理学]; O22 [运筹学];
学科分类号
070105 ; 12 ; 1201 ; 1202 ; 120202 ;
摘要
In this article, following the idea used by Gopfert et al. [A. Gopfert, Chr. Tammer and C. Zalinescu (2000). On the vectorial Ekeland's variational principle and minimal points in-product spaces. Nonlinear Analysis, Theory, Methods & Applications, 39, 909-922] to derive an Ekeland's variational principle for vector-valued functions, we derive a new variant of Ekeland's variational principle for set-valued maps. Finally, we apply this variational principle to obtain an approximate necessary optimality condition for a class of set-valued optimization problems.
引用
收藏
页码:53 / 63
页数:11
相关论文
共 50 条
  • [21] Approximation of continuous set-valued maps by constant set-valued maps with image balls
    S. I. Dudov
    A. B. Konoplev
    Mathematical Notes, 2007, 82 : 469 - 473
  • [22] Approximation of continuous set-valued maps by constant set-valued maps with image balls
    Dudov, S. I.
    Konoplev, A. B.
    MATHEMATICAL NOTES, 2007, 82 (3-4) : 469 - 473
  • [23] Generalized vector variational inequality and its duality for set-valued maps
    Lee, GM
    Kim, DS
    Lee, BS
    Chen, GY
    APPLIED MATHEMATICS LETTERS, 1998, 11 (04) : 21 - 26
  • [24] A selection theorem for a new class of set-valued maps
    Drozdovskii, SA
    Filippov, VV
    MATHEMATICAL NOTES, 1999, 66 (3-4) : 411 - 414
  • [25] A selection theorem for a new class of set-valued maps
    S. A. Drozdovskii
    V. V. Filippov
    Mathematical Notes, 1999, 66 : 411 - 414
  • [26] On various entropies of set-valued maps
    Wang, Xinsheng
    Zhang, Yu
    Zhu, Yujun
    JOURNAL OF MATHEMATICAL ANALYSIS AND APPLICATIONS, 2023, 524 (02)
  • [27] Convexity Criteria for Set-Valued Maps
    Pham Huu Sach
    Nguyen Dong Yen
    Set-Valued Analysis, 1997, 5 (1): : 37 - 45
  • [28] METRIC ENTROPY FOR SET-VALUED MAPS
    Vivas, Kendry J.
    Sirvent, Victor F.
    DISCRETE AND CONTINUOUS DYNAMICAL SYSTEMS-SERIES B, 2022, 27 (11): : 6589 - 6604
  • [29] Random Lifting of Set-Valued Maps
    Capuani, Rossana
    Marigonda, Antonio
    Mogentale, Marta
    LARGE-SCALE SCIENTIFIC COMPUTING (LSSC 2021), 2022, 13127 : 297 - 305
  • [30] TOPOLOGICAL ENTROPY FOR SET-VALUED MAPS
    Carrasco-Olivera, Dante
    Metzger Alvan, Roger
    Morales Rojas, Carlos Arnoldo
    DISCRETE AND CONTINUOUS DYNAMICAL SYSTEMS-SERIES B, 2015, 20 (10): : 3461 - 3474