Acoustical wave propagator

被引:13
作者
Pan, J [1 ]
Wang, JB
机构
[1] Univ Western Australia, Dept Mech & Mat Engn, Nedlands, WA 6907, Australia
[2] Univ Western Australia, Dept Phys, Nedlands, WA 6907, Australia
关键词
D O I
10.1121/1.429577
中图分类号
O42 [声学];
学科分类号
070206 ; 082403 ;
摘要
In this paper, an explicit acoustical wave propagator (AWP) is introduced to described the rime-domain evolution of acoustical waves. To implement its operation on an initial state of wave motion, the acoustical wave propagator is approximated as a Chebyshev polynomial expansion, which converges to machine accuracy. The spatial gradient in each polynomial term is evaluated by a Fourier transformation scheme. Analysis and numerical examples demonstrated that this Chebyshev-Fourier scheme is highly accurate and computational effective in predicting time-domain acoustical wave propagation and scattering. (C) 2000 Acoustical Society of America. [S0001-4966(00)04607-5].
引用
收藏
页码:481 / 487
页数:7
相关论文
共 18 条
[1]  
ASKER A, 1978, J CHEM PHYS, V68, P2794
[2]   Space-time mixed finite elements for rods [J].
Atilgan, AR ;
Hodges, DH ;
Ozbek, MA ;
Zhou, W .
JOURNAL OF SOUND AND VIBRATION, 1996, 192 (03) :731-739
[3]   Time-dependent quantum mechanical approach to reactive scattering and related processes [J].
Balakrishnan, N ;
Kalyanaraman, C ;
Sathyamurthy, N .
PHYSICS REPORTS-REVIEW SECTION OF PHYSICS LETTERS, 1997, 280 (02) :79-144
[4]   Finite-difference time-domain simulation of low-frequency room acoustic problems [J].
Botteldooren, D .
JOURNAL OF THE ACOUSTICAL SOCIETY OF AMERICA, 1995, 98 (06) :3302-3308
[5]  
COYETTE JP, 1994, P ISMA 19 LEUVEN, P223
[6]   SOLUTION OF THE SCHRODINGER-EQUATION BY A SPECTRAL METHOD [J].
FEIT, MD ;
FLECK, JA ;
STEIGER, A .
JOURNAL OF COMPUTATIONAL PHYSICS, 1982, 47 (03) :412-433
[7]  
FUNG KY, 1997, P 5 INT C SOUND VIBR, P1839
[8]  
Gottlieb D., 1977, NUMERICAL ANAL SPECT
[9]   Low-dissipation and low-dispersion Runge-Kutta schemes for computational acoustics [J].
Hu, FQ ;
Hussaini, MY ;
Manthey, JL .
JOURNAL OF COMPUTATIONAL PHYSICS, 1996, 124 (01) :177-191
[10]  
JAMES ML, 1995, APPL NUMERICAL METHO