Particle swarm optimisation for dynamic optimisation problems: a review

被引:54
|
作者
Jordehi, Ahmad Rezaee [1 ]
机构
[1] Univ Putra Malaysia, Dept Elect Engn, Serdang 43400, Malaysia
关键词
Particle swarm optimisation; Optimisation; Dynamic optimisation problem; ALGORITHM; OPTIMA; STRATEGY; SYSTEM; MODEL; PSO;
D O I
10.1007/s00521-014-1661-6
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
Some real-world optimisation problems are dynamic; that is, their objective function and/or constraints vary over time. Solving such problems is very challenging. Particle swarm optimisation (PSO) is a well-known and efficient optimisation algorithm. In this paper, the PSO variants, devised for dynamic optimisation problems, are reviewed. This is the first comprehensive review that is conducted on PSO variants in dynamic environments. The author believes that this paper can be useful for researchers who intend to solve dynamic optimisation problems.
引用
收藏
页码:1507 / 1516
页数:10
相关论文
共 50 条
  • [21] An enhanced multi-objective particle swarm optimisation with Levy flight
    Lan, Hai-ying
    Xu, Gang
    Yang, Yu-qun
    INTERNATIONAL JOURNAL OF COMPUTING SCIENCE AND MATHEMATICS, 2023, 17 (01) : 79 - 94
  • [22] Overview of Particle Swarm Optimisation for Feature Selection in Classification
    Binh Tran
    Xue, Bing
    Zhang, Mengjie
    SIMULATED EVOLUTION AND LEARNING (SEAL 2014), 2014, 8886 : 605 - 617
  • [23] Perfectly convergent particle swarm optimisation in multidimensional space
    Kumar, Devinder
    Jain, N. K.
    Nangia, Uma
    INTERNATIONAL JOURNAL OF BIO-INSPIRED COMPUTATION, 2021, 18 (04) : 221 - 228
  • [24] An alternative approach for particle swarm optimisation using serendipity
    Procopio Paiva, Fabio Augusto
    Ferreira Costa, Jose Alfredo
    Muniz Silva, Claudio Rodrigues
    INTERNATIONAL JOURNAL OF BIO-INSPIRED COMPUTATION, 2018, 11 (02) : 81 - 90
  • [25] Direct back propagation neural dynamic programming-based particle swarm optimisation
    Lu, Yongzhong
    Yan, Danping
    Zhang, Jingyu
    Levy, David
    CONNECTION SCIENCE, 2014, 26 (04) : 367 - 388
  • [26] Particle swarm optimisation in designing parameters of manufacturing processes: A review (2008-2018)
    Sibalija, Tatjana, V
    APPLIED SOFT COMPUTING, 2019, 84
  • [27] On the effect of particle update modes in particle swarm optimisation
    Dong, Nanjiang
    Wang, Rui
    Zhang, Tao
    Ou, Junwei
    INTERNATIONAL JOURNAL OF BIO-INSPIRED COMPUTATION, 2023, 21 (04) : 230 - 239
  • [28] Hybrid particle swarm optimisation with adaptively coordinated local searches for multimodal optimisation
    Xu, Gang
    Liu, Hao
    INTERNATIONAL JOURNAL OF COMPUTING SCIENCE AND MATHEMATICS, 2015, 6 (03) : 266 - 277
  • [29] Particle swarm optimisation with stochastic ranking for constrained numerical and engineering benchmark problems
    Ali, Layak
    Sabat, Samrat L.
    Udgata, Siba K.
    INTERNATIONAL JOURNAL OF BIO-INSPIRED COMPUTATION, 2012, 4 (03) : 155 - 166
  • [30] Parameters optimisation of a vehicle suspension system using a particle swarm optimisation algorithm
    Centeno Drehmer, Luis Roberto
    Paucar Casas, Walter Jesus
    Gomes, Herbert Martins
    VEHICLE SYSTEM DYNAMICS, 2015, 53 (04) : 449 - 474