Particle-Based Adaptive-Lag Online Marginal Smoothing in General State-Space Models

被引:4
作者
Alenlov, Johan [1 ]
Olsson, Jimmy [2 ]
机构
[1] Uppsala Univ, Dept Informat Technol, S-75236 Uppsala, Sweden
[2] KTH Royal Inst Technol, Dept Math, S-11428 Stockholm, Sweden
基金
瑞典研究理事会;
关键词
Smoothing methods; Approximation algorithms; Markov processes; Signal processing algorithms; Monte Carlo methods; Hidden Markov models; Biological system modeling; Sequential Monte Carlo methods; state-space models; marginal smoothing; PaRIS; particle filters; state estimation; HIDDEN MARKOV-MODELS; MONTE-CARLO METHODS; ALGORITHM; FILTER;
D O I
10.1109/TSP.2019.2941066
中图分类号
TM [电工技术]; TN [电子技术、通信技术];
学科分类号
0808 ; 0809 ;
摘要
We present a novel algorithm, an adaptive-lag smoother, approximating efficiently, in an online fashion, sequences of expectations under the marginal smoothing distributions in general state-space models. The algorithm evolves recursively a bank of estimators, one for each marginal, in resemblance with the so-called particle-based, rapid incremental smoother (PaRIS). Each estimator is propagated until a stopping criterion, measuring the fluctuations of the estimates, is met. The presented algorithm is furnished with theoretical results describing its asymptotic limit and memory usage.
引用
收藏
页码:5571 / 5582
页数:12
相关论文
共 50 条
  • [41] AN EXEMPLAR-BASED HIDDEN MARKOV MODEL FRAMEWORK FOR NONLINEAR STATE-SPACE MODELS
    Lguensat, Redouane
    Fablet, Ronan
    Ailliot, Pierre
    Tandeo, Pierre
    2016 24TH EUROPEAN SIGNAL PROCESSING CONFERENCE (EUSIPCO), 2016, : 2340 - 2344
  • [42] A General-Purpose Fixed-Lag No U-Turn Sampler for Nonlinear Non-Gaussian State Space Models
    Varsi, Alessandro
    Devlin, Lee
    Horridge, Paul
    Maskell, Simon
    IEEE TRANSACTIONS ON AEROSPACE AND ELECTRONIC SYSTEMS, 2024, 60 (04) : 4140 - 4156
  • [43] Learning state and proposal dynamics in state-space models using differentiable particle filters and neural networks
    Cox, Benjamin
    Segarra, Santiago
    Elvira, Victor
    SIGNAL PROCESSING, 2025, 234
  • [44] Adaptive Dual-Domain Learning for Hyperspectral Anomaly Detection With State-Space Models
    Liu, Sitian
    Peng, Lintao
    Chang, Xuyang
    Wang, Zhen
    Wen, Guanghui
    Zhu, Chunli
    IEEE TRANSACTIONS ON GEOSCIENCE AND REMOTE SENSING, 2025, 63
  • [45] Predictive Torque Control of Induction Machines Based on State-Space Models
    Miranda, Hernan
    Cortes, Patricio
    Yuz, Juan I.
    Rodriguez, Jose
    IEEE TRANSACTIONS ON INDUSTRIAL ELECTRONICS, 2009, 56 (06) : 1916 - 1924
  • [46] A PROJECTION-BASED RAO-BLACKWELLIZED PARTICLE FILTER TO ESTIMATE PARAMETERS IN CONDITIONALLY CONJUGATE STATE-SPACE MODELS
    Papez, Milan
    2018 IEEE STATISTICAL SIGNAL PROCESSING WORKSHOP (SSP), 2018, : 268 - 272
  • [47] Identification of Nonlinear Lateral Flow Immunoassay State-Space Models via Particle Filter Approach
    Zeng, Nianyin
    Wang, Zidong
    Li, Yurong
    Du, Min
    Liu, Xiaohui
    IEEE TRANSACTIONS ON NANOTECHNOLOGY, 2012, 11 (02) : 321 - 327
  • [48] MambaVesselNet: A Novel Approach to Blood Vessel Segmentation Based on State-Space Models
    Liu, Tianyong
    Zhang, Zhiqing
    Fan, Guojia
    Li, Bin
    Zhou, Shoujun
    Xu, Chengwu
    Zhao, Gang
    Yang, Fuxia
    IEEE JOURNAL OF BIOMEDICAL AND HEALTH INFORMATICS, 2025, 29 (03) : 2034 - 2047
  • [49] Time Series Anomaly Detection with Reconstruction-Based State-Space Models
    Wang, Fan
    Wang, Keli
    Yao, Boyu
    ARTIFICIAL NEURAL NETWORKS AND MACHINE LEARNING, ICANN 2023, PT III, 2023, 14256 : 74 - 86
  • [50] Computationally Efficient Nonlinear Predictive Control Based on State-Space Neural Models
    Lawrynczuk, Maciej
    PARALLEL PROCESSING AND APPLIED MATHEMATICS, PT I, 2010, 6067 : 350 - 359