Particle-Based Adaptive-Lag Online Marginal Smoothing in General State-Space Models

被引:4
作者
Alenlov, Johan [1 ]
Olsson, Jimmy [2 ]
机构
[1] Uppsala Univ, Dept Informat Technol, S-75236 Uppsala, Sweden
[2] KTH Royal Inst Technol, Dept Math, S-11428 Stockholm, Sweden
基金
瑞典研究理事会;
关键词
Smoothing methods; Approximation algorithms; Markov processes; Signal processing algorithms; Monte Carlo methods; Hidden Markov models; Biological system modeling; Sequential Monte Carlo methods; state-space models; marginal smoothing; PaRIS; particle filters; state estimation; HIDDEN MARKOV-MODELS; MONTE-CARLO METHODS; ALGORITHM; FILTER;
D O I
10.1109/TSP.2019.2941066
中图分类号
TM [电工技术]; TN [电子技术、通信技术];
学科分类号
0808 ; 0809 ;
摘要
We present a novel algorithm, an adaptive-lag smoother, approximating efficiently, in an online fashion, sequences of expectations under the marginal smoothing distributions in general state-space models. The algorithm evolves recursively a bank of estimators, one for each marginal, in resemblance with the so-called particle-based, rapid incremental smoother (PaRIS). Each estimator is propagated until a stopping criterion, measuring the fluctuations of the estimates, is met. The presented algorithm is furnished with theoretical results describing its asymptotic limit and memory usage.
引用
收藏
页码:5571 / 5582
页数:12
相关论文
共 50 条
  • [31] FIR SMOOTHING OF DISCRETE-TIME STATE-SPACE MODELS WITH APPLICATIONS TO CLOCKS
    Ibarra-Manzano, Oscar
    Morales-Mendoza, Luis
    Shmaliy, Yuriy S.
    19TH EUROPEAN SIGNAL PROCESSING CONFERENCE (EUSIPCO-2011), 2011, : 1800 - 1804
  • [32] Online Joint State Inference and Learning of Partially Unknown State-Space Models
    Kullberg, Anton
    Skog, Isaac
    Hendeby, Gustaf
    IEEE TRANSACTIONS ON SIGNAL PROCESSING, 2021, 69 : 4149 - 4161
  • [33] Maximum approximate likelihood estimation of general continuous-time state-space models
    Mews, Sina
    Langrock, Roland
    Oetting, Marius
    Yaqine, Houda
    Reinecke, Jost
    STATISTICAL MODELLING, 2024, 24 (01) : 9 - 28
  • [34] On Filtering and Smoothing Algorithms for Linear State-Space Models Having Quantized Output Data
    Cedeno, Angel L.
    Gonzalez, Rodrigo A.
    Godoy, Boris I.
    Carvajal, Rodrigo
    Aguero, Juan C.
    MATHEMATICS, 2023, 11 (06)
  • [35] PARTICLE GIBBS SAMPLING FOR REGIME-SWITCHING STATE-SPACE MODELS
    El-Laham, Yousef
    Yang, Liu
    Lynch, Heather J.
    Djuric, Petar M.
    Bugallo, Monica F.
    2021 IEEE INTERNATIONAL CONFERENCE ON ACOUSTICS, SPEECH AND SIGNAL PROCESSING (ICASSP 2021), 2021, : 5579 - 5583
  • [36] Marginalized particle filters for mixed linear/nonlinear state-space models
    Schön, T
    Gustafsson, F
    Nordlund, PJ
    IEEE TRANSACTIONS ON SIGNAL PROCESSING, 2005, 53 (07) : 2279 - 2289
  • [37] FAST COMPUTATION OF SMOOTHED ADDITIVE FUNCTIONALS IN GENERAL STATE-SPACE MODELS
    Dubarry, Cyrille
    Le Corff, Sylvain
    2011 IEEE STATISTICAL SIGNAL PROCESSING WORKSHOP (SSP), 2011, : 197 - 200
  • [38] A Lagged Particle Filter for Stable Filtering of Certain High-Dimensional State-Space Models
    Ruzayqat, Hamza
    Er-raiy, Aimad
    Beskos, Alexandros
    Crisan, Dan
    Jasra, Ajay
    Kantas, Nikolas
    SIAM-ASA JOURNAL ON UNCERTAINTY QUANTIFICATION, 2022, 10 (03) : 1130 - 1161
  • [39] Spatiotemporal blocking of the bouncy particle sampler for efficient inference in state-space models
    Goldman, Jacob Vorstrup
    Singh, Sumeetpal S.
    STATISTICS AND COMPUTING, 2021, 31 (05)
  • [40] Exponential forgetting and geometric ergodicity for optimal filtering in general state-space models
    Tadic, VB
    Doucet, A
    STOCHASTIC PROCESSES AND THEIR APPLICATIONS, 2005, 115 (08) : 1408 - 1436