Particle-Based Adaptive-Lag Online Marginal Smoothing in General State-Space Models

被引:4
|
作者
Alenlov, Johan [1 ]
Olsson, Jimmy [2 ]
机构
[1] Uppsala Univ, Dept Informat Technol, S-75236 Uppsala, Sweden
[2] KTH Royal Inst Technol, Dept Math, S-11428 Stockholm, Sweden
基金
瑞典研究理事会;
关键词
Smoothing methods; Approximation algorithms; Markov processes; Signal processing algorithms; Monte Carlo methods; Hidden Markov models; Biological system modeling; Sequential Monte Carlo methods; state-space models; marginal smoothing; PaRIS; particle filters; state estimation; HIDDEN MARKOV-MODELS; MONTE-CARLO METHODS; ALGORITHM; FILTER;
D O I
10.1109/TSP.2019.2941066
中图分类号
TM [电工技术]; TN [电子技术、通信技术];
学科分类号
0808 ; 0809 ;
摘要
We present a novel algorithm, an adaptive-lag smoother, approximating efficiently, in an online fashion, sequences of expectations under the marginal smoothing distributions in general state-space models. The algorithm evolves recursively a bank of estimators, one for each marginal, in resemblance with the so-called particle-based, rapid incremental smoother (PaRIS). Each estimator is propagated until a stopping criterion, measuring the fluctuations of the estimates, is met. The presented algorithm is furnished with theoretical results describing its asymptotic limit and memory usage.
引用
收藏
页码:5571 / 5582
页数:12
相关论文
共 50 条
  • [21] Simulation smoothing for state-space models: A computational efficiency analysis
    McCausland, William J.
    Miller, Shirley
    Pelletier, Denis
    COMPUTATIONAL STATISTICS & DATA ANALYSIS, 2011, 55 (01) : 199 - 212
  • [22] Biased Online Parameter Inference for State-Space Models
    Pierre Del Moral
    Ajay Jasra
    Yan Zhou
    Methodology and Computing in Applied Probability, 2017, 19 : 727 - 749
  • [23] Fast and Numerically Stable Particle-Based Online Additive Smoothing: The AdaSmooth Algorithm
    Mastrototaro, Alessandro
    Olsson, Jimmy
    Alenlov, Johan
    JOURNAL OF THE AMERICAN STATISTICAL ASSOCIATION, 2024, 119 (545) : 356 - 367
  • [24] A Bayesian robust Kalman smoothing framework for state-space models with uncertain noise statistics
    Dehghannasiri, Roozbeh
    Qian, Xiaoning
    Dougherty, Edward R.
    EURASIP JOURNAL ON ADVANCES IN SIGNAL PROCESSING, 2018,
  • [26] Biased Online Parameter Inference for State-Space Models
    Del Moral, Pierre
    Jasra, Ajay
    Zhou, Yan
    METHODOLOGY AND COMPUTING IN APPLIED PROBABILITY, 2017, 19 (03) : 727 - 749
  • [27] Particle filters for state-space models with the presence of unknown static parameters
    Storvik, G
    IEEE TRANSACTIONS ON SIGNAL PROCESSING, 2002, 50 (02) : 281 - 289
  • [28] Online Bayesian inference and learning of Gaussian-process state-space models
    Berntorp, Karl
    AUTOMATICA, 2021, 129
  • [29] Rao-Blackwellized Particle Filter Using Noise Adaptive Kalman Filter for Fully Mixing State-Space Models
    Badar, Tabish
    Sarkka, Simo
    Zhao, Zheng
    Visala, Arto
    IEEE TRANSACTIONS ON AEROSPACE AND ELECTRONIC SYSTEMS, 2024, 60 (05) : 6972 - 6982
  • [30] A STABLE PARTICLE FILTER FOR A CLASS OF HIGH-DIMENSIONAL STATE-SPACE MODELS
    Beskos, Alexandros
    Crisan, Dan
    Jasra, Ajay
    Kamatani, Kengo
    Zhou, Yan
    ADVANCES IN APPLIED PROBABILITY, 2017, 49 (01) : 24 - 48