Single-source chip-based frequency comb enabling extreme parallel data transmission

被引:200
作者
Hu, Hao [1 ]
Da Ros, Francesco [1 ]
Pu, Minhao [1 ]
Ye, Feihong [1 ]
Ingerslev, Kasper [1 ]
da Silva, Edson Porto [1 ]
Nooruzzaman, Md. [1 ]
Amma, Yoshimichi [2 ]
Sasaki, Yusuke [2 ]
Mizuno, Takayuki [3 ]
Miyamoto, Yutaka [3 ]
Ottaviano, Luisa [1 ]
Semenova, Elizaveta [1 ]
Guan, Pengyu [1 ]
Zibar, Darko [1 ]
Galili, Michael [1 ]
Yvind, Kresten [1 ]
Morioka, Toshio [1 ]
Oxenlowe, Leif K. [1 ]
机构
[1] Tech Univ Denmark, DTU Foton, Lyngby, Denmark
[2] Fujikura Ltd, Adv Technol Lab, Sakura, Chiba, Japan
[3] NTT Corp, NTT Network Innovat Labs, Yokosuka, Kanagawa, Japan
基金
欧盟地平线“2020”;
关键词
GENERATION; BAND;
D O I
10.1038/s41566-018-0205-5
中图分类号
O43 [光学];
学科分类号
070207 ; 0803 ;
摘要
The Internet today transmits hundreds of terabits per second, consumes 9% of all electricity worldwide and grows by 20-30% per year(1,2). To support capacity demand, massively parallel communication links are installed, not scaling favourably concerning energy consumption. A single frequency comb source may substitute many parallel lasers and improve system energy-efficiency(3,4). We present a frequency comb realized by a non-resonant aluminium-gallium-arsenide-oninsulator (AlGaAsOI) nanowaveguide with 66% pump-tocomb conversion efficiency, which is significantly higher than state-of-the-art resonant comb sources. This enables unprecedented high data-rate transmission for chip-based sources, demonstrated using a single-mode 30-core fibre. We show that our frequency comb can carry 661 Tbit s(-1) of data, equivalent to more than the total Internet traffic today. The comb is obtained by seeding the AlGaAsOI chip with 10-GHz picosecond pulses at a low pump power (85 mW), and this scheme is robust to temperature changes, is energy efficient and facilitates future integration with on-chip lasers or amplifiers(5,6).
引用
收藏
页码:469 / +
页数:6
相关论文
共 34 条
[1]   An ultrawide-band semiconductor optical amplifier having an extremely high penalty-free output power of 23 dBm achieved with quantum dots [J].
Akiyama, T ;
Ekawa, M ;
Sugawara, M ;
Kawaguchi, K ;
Sudo, H ;
Kuramata, A ;
Ebe, H ;
Arakawa, Y .
IEEE PHOTONICS TECHNOLOGY LETTERS, 2005, 17 (08) :1614-1616
[2]  
Andrae A., 2017, Total Consumer Power Consumption Forecast
[3]  
[Anonymous], 2009, 302307 ETSI EN
[4]  
[Anonymous], 2017, CISC VIS NETW IND FO
[5]   Ultrahigh Count Coherent WDM Channels Transmission Using Optical Parametric Comb-Based Frequency Synthesizer [J].
Ataie, Vahid ;
Temprana, Eduardo ;
Liu, Lan ;
Myslivets, Evgeny ;
Kuo, Bill Ping-Piu ;
Alic, Nikola ;
Radic, Stojan .
JOURNAL OF LIGHTWAVE TECHNOLOGY, 2015, 33 (03) :694-699
[6]  
Baxter G., 2006, 2006 OPT FIB COMM C
[7]   Terabit-Scale Orbital Angular Momentum Mode Division Multiplexing in Fibers [J].
Bozinovic, Nenad ;
Yue, Yang ;
Ren, Yongxiong ;
Tur, Moshe ;
Kristensen, Poul ;
Huang, Hao ;
Willner, Alan E. ;
Ramachandran, Siddharth .
SCIENCE, 2013, 340 (6140) :1545-1548
[8]   Photonic chip-based optical frequency comb using soliton Cherenkov radiation [J].
Brasch, V. ;
Geiselmann, M. ;
Herr, T. ;
Lihachev, G. ;
Pfeiffer, M. H. P. ;
Gorodetsky, M. L. ;
Kippenberg, T. J. .
SCIENCE, 2016, 351 (6271) :357-360
[9]  
Dar R., 2016, ECOC 2016 42 EUR C O, P482
[10]   Capacity Limits of Optical Fiber Networks [J].
Essiambre, Rene-Jean ;
Kramer, Gerhard ;
Winzer, Peter J. ;
Foschini, Gerard J. ;
Goebel, Bernhard .
JOURNAL OF LIGHTWAVE TECHNOLOGY, 2010, 28 (04) :662-701