On uniqueness for a semilinear parabolic system coupled in an equation and a boundary condition

被引:3
作者
Kordos, M [1 ]
机构
[1] Comenius Univ, Inst Appl Math, Bratislava 84248, Slovakia
关键词
parabolic system; uniqueness;
D O I
10.1016/j.jmaa.2004.06.002
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
We consider the system u(t) = Deltau + v(p), v(t) = Deltav, x epsilon R-+(N), t > 0, -partial derivativeu/partial derivativex(1) = 0, -partial derivativev/partial derivativex(1) = u(q), x(1) = 0, t > 0, u(x, 0) = u(0)(x), v(x,0) = v(0)(x), x epsilon R-+(N), where R-+(N) = {(x(1),x'): x' epsilon RN-1, x(1) > 0}, p, q are positive numbers, and functions u(0), v(0) in the initial conditions are nonnegative and bounded. We show that nonnegative solutions are unique if pq greater than or equal to 1. We also find a nontrivial nonnegative solution with vanishing initial values when pq < 1. (C) 2004 Elsevier Inc. All rights reserved.
引用
收藏
页码:655 / 666
页数:12
相关论文
共 12 条