Applying meta-analysis to genotype-tissue expression data from multiple tissues to identify eQTLs and increase the number of eGenes

被引:17
作者
Duong, Dat [1 ]
Gai, Lisa [1 ]
Snir, Sagi [2 ,3 ]
Kang, Eun Yong [1 ]
Han, Buhm [4 ,5 ]
Sul, Jae Hoon [6 ]
Eskin, Eleazar [1 ,7 ]
机构
[1] Univ Calif Los Angeles, Dept Comp Sci, Los Angeles, CA 90095 USA
[2] Univ Haifa, Inst Evolut, IL-3498838 Haifa, Israel
[3] Univ Haifa, Dept Evolutionary & Environm Biol, IL-3498838 Haifa, Israel
[4] Univ Ulsan, Coll Med, Dept Convergence Med, Seoul 05505, South Korea
[5] Asan Inst Life Sci, Asan Med Ctr, Seoul 05505, South Korea
[6] Univ Calif Los Angeles, Dept Psychiat & Behav Sci, Los Angeles, CA 90095 USA
[7] Univ Calif Los Angeles, Dept Human Genet, Los Angeles, CA 90095 USA
基金
美国国家科学基金会; 新加坡国家研究基金会; 美国国家卫生研究院;
关键词
GENE-EXPRESSION; ASSOCIATION; DISEASE; POWER; RISK;
D O I
10.1093/bioinformatics/btx227
中图分类号
Q5 [生物化学];
学科分类号
071010 ; 081704 ;
摘要
Motivation: There is recent interest in using gene expression data to contextualize findings from traditional genome-wide association studies (GWAS). Conditioned on a tissue, expression quantitative trait loci (eQTLs) are genetic variants associated with gene expression, and eGenes are genes whose expression levels are associated with genetic variants. eQTLs and eGenes provide great supporting evidence for GWAS hits and important insights into the regulatory pathways involved in many diseases. When a significant variant or a candidate gene identified by GWAS is also an eQTL or eGene, there is strong evidence to further study this variant or gene. Multi-tissue gene expression datasets like the Gene Tissue Expression (GTEx) data are used to find eQTLs and eGenes. Unfortunately, these datasets often have small sample sizes in some tissues. For this reason, there have been many meta-analysis methods designed to combine gene expression data across many tissues to increase power for finding eQTLs and eGenes. However, these existing techniques are not scalable to datasets containing many tissues, like the GTEx data. Furthermore, these methods ignore a biological insight that the same variant may be associated with the same gene across similar tissues. Results: We introduce a meta-analysis model that addresses these problems in existing methods. We focus on the problem of finding eGenes in gene expression data from many tissues, and show that our model is better than other types of meta-analyses.
引用
收藏
页码:I67 / I74
页数:8
相关论文
共 26 条
[21]   Cis-eQTLs regulate reduced LST1 gene and NCR3 gene expression and contribute to increased autoimmune disease risk [J].
Liu, Guiyou ;
Hu, Yang ;
Jin, Shuilin ;
Zhang, Fang ;
Jiang, Qinghua ;
Hao, Junwei .
PROCEEDINGS OF THE NATIONAL ACADEMY OF SCIENCES OF THE UNITED STATES OF AMERICA, 2016, 113 (42) :E6321-E6322
[22]   Combining genomewide association study and lung eQTL analysis provides evidence for novel genes associated with asthma [J].
Nieuwenhuis, M. A. ;
Siedlinski, M. ;
van den Berge, M. ;
Granell, R. ;
Li, X. ;
Niens, M. ;
van der Vlies, P. ;
Altmueller, J. ;
Nuernberg, P. ;
Kerkhof, M. ;
van Schayck, O. C. ;
Riemersma, R. A. ;
van der Molen, T. ;
de Monchy, J. G. ;
Bosse, Y. ;
Sandford, A. ;
Bruijnzeel-Koomen, C. A. ;
Gerth van Wijk, R. ;
ten Hacken, N. H. ;
Timens, W. ;
Boezen, H. M. ;
Henderson, J. ;
Kabesch, M. ;
Vonk, J. M. ;
Postma, D. S. ;
Koppelman, G. H. .
ALLERGY, 2016, 71 (12) :1712-1720
[23]   ASYMPTOTIC PROPERTIES OF MAXIMUM-LIKELIHOOD ESTIMATORS AND LIKELIHOOD RATIO TESTS UNDER NONSTANDARD CONDITIONS [J].
SELF, SG ;
LIANG, KY .
JOURNAL OF THE AMERICAN STATISTICAL ASSOCIATION, 1987, 82 (398) :605-610
[24]   Accurate and Fast Multiple-Testing Correction in eQTL Studies [J].
Sul, Jae Hoon ;
Raj, Towfique ;
de Jong, Simone ;
de Bakker, Paul I. W. ;
Raychaudhuri, Soumya ;
Ophoff, Roel A. ;
Stranger, Barbara E. ;
Eskin, Eleazar ;
Han, Buhm .
AMERICAN JOURNAL OF HUMAN GENETICS, 2015, 96 (06) :857-868
[25]   Effectively Identifying eQTLs from Multiple Tissues by Combining Mixed Model and Meta-analytic Approaches [J].
Sul, Jae Hoon ;
Han, Buhm ;
Ye, Chun ;
Choi, Ted ;
Eskin, Eleazar .
PLOS GENETICS, 2013, 9 (06)
[26]  
Thompson S.G., 1997, Statist. Med, V18, pS82