Estimation of the parameters of symmetric stable ARMA and ARMA-GARCH models

被引:4
|
作者
Sathe, Aastha M. [1 ]
Upadhye, N. S. [1 ]
机构
[1] Indian Inst Technol Madras, Dept Math, Chennai 600036, Tamil Nadu, India
关键词
ARMA– GARCH models; stable distributions; parameter estimation; simulation;
D O I
10.1080/02664763.2021.1928019
中图分类号
O21 [概率论与数理统计]; C8 [统计学];
学科分类号
020208 ; 070103 ; 0714 ;
摘要
In this article, we first propose the modified Hannan-Rissanen Method for estimating the parameters of autoregressive moving average (ARMA) process with symmetric stable noise and symmetric stable generalized autoregressive conditional heteroskedastic (GARCH) noise. Next, we propose the modified empirical characteristic function method for the estimation of GARCH parameters with symmetric stable noise. Further, we show the efficiency, accuracy and simplicity of our methods with Monte-Carlo simulation. Finally, we apply our proposed methods to model the financial data.
引用
收藏
页码:2964 / 2980
页数:17
相关论文
共 50 条
  • [21] ARMA-GARCH models: Bayes estimation versus MLE, and Bayes non-stationarity test
    Nakatsuma, T
    Tsurumi, H
    AMERICAN STATISTICAL ASSOCIATION - 1996 PROCEEDINGS OF THE SECTION ON BAYESIAN STATISTICAL SCIENCE, 1996, : 343 - 348
  • [22] Empirical investigation on modeling solar radiation series with ARMA-GARCH models
    Sun, Huaiwei
    Yan, Dong
    Zhao, Na
    Zhou, Jianzhong
    ENERGY CONVERSION AND MANAGEMENT, 2015, 92 : 385 - 395
  • [23] MLE for change-point in ARMA-GARCH models with a changing drift
    Ling, SQ
    MODSIM 2003: INTERNATIONAL CONGRESS ON MODELLING AND SIMULATION, VOLS 1-4: VOL 1: NATURAL SYSTEMS, PT 1; VOL 2: NATURAL SYSTEMS, PT 2; VOL 3: SOCIO-ECONOMIC SYSTEMS; VOL 4: GENERAL SYSTEMS, 2003, : 1299 - 1304
  • [24] MLE for change-point in ARMA-GARCH models with a changing drift
    Ling, SQ
    PROBABILITY, FINANCE AND INSURANCE, 2004, : 174 - 194
  • [26] A mixed portmanteau test for ARMA-GARCH models by the quasi-maximum exponential likelihood estimation approach
    Zhu, Ke
    JOURNAL OF TIME SERIES ANALYSIS, 2013, 34 (02) : 230 - 237
  • [27] Time Series Modeling of Earthquake Ground Motions Using ARMA-GARCH Models
    Lin, Jeng-Hsiang
    MECHANICAL ENGINEERING, MATERIALS SCIENCE AND CIVIL ENGINEERING II, 2014, 470 : 240 - 243
  • [28] Empirical analysis of ARMA-GARCH models in market risk estimation on high-frequency US data
    Beck, Alexander
    Kim, Young Shin Aaron
    Rachev, Svetlozar
    Feindt, Michael
    Fabozzi, Frank
    STUDIES IN NONLINEAR DYNAMICS AND ECONOMETRICS, 2013, 17 (02): : 167 - 177
  • [29] 基于ARMA-GARCH模型的风险管理
    苗苗
    中国证券期货, 2013, (04) : 94 - 95
  • [30] Full versus quasi MLE for ARMA-GARCH models with infinitely divisible innovations
    Goode, Jimmie
    Kim, Young Shin
    Fabozzi, Frank J.
    APPLIED ECONOMICS, 2015, 47 (48) : 5147 - 5158