Fourier Multipliers and Dirac Operators

被引:1
作者
Nolder, Craig A. [1 ]
Wang, Guanghong [2 ]
机构
[1] Florida State Univ, Dept Math, Tallahassee, FL 32306 USA
[2] 1900 Glenn Club Dr Apt 922, Stone Mt, GA 30087 USA
关键词
Fourier Multipliers; Clifford analysis; Dirac operators; Pi operator; Beurling Ahlfors transform; L-p-estimates; BELLMAN FUNCTION;
D O I
10.1007/s00006-016-0752-0
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
We use Fourier multipliers of the Dirac operator and Cauchy transform to obtain composition theorems and integral representations. In particular we calculate the multiplier of the -operator. This operator is the hypercomplex version of the Beurling-Ahlfors transform in the plane. The hypercomplex Beurling-Ahlfors transform is a direct generalization of the Beurling-Ahlfors transform and reduces to this operator in the plane. We give an integral representation for iterations of the hypercomplex Buerling-Ahlfors transform and we present here a bound for the -norm. Such -bounds are essential for applications of the Beurling-Ahlfors transformation in the plane. The upper bound presented here is where m is the dimension of the Euclidean space on which the functions are defined, and . We use recent estimates on second order Riesz transforms to obtain this result. Using the Fourier multiplier of the -operator we express this operator as a hypercomplex linear combination of second order Riesz transforms.
引用
收藏
页码:1647 / 1657
页数:11
相关论文
共 21 条
[1]  
[Anonymous], 2001, Oxford Mathematical Monographs
[2]   A martingale study of the Beurling-Ahlfors transform in R(n) [J].
Banuelos, R ;
Lindeman, A .
JOURNAL OF FUNCTIONAL ANALYSIS, 1997, 145 (01) :224-265
[3]   Sharp inequalities for heat kernels of Schrodinger operators and applications to spectral gaps [J].
Bañuelos, R ;
Méndez-Hernández, PJ .
JOURNAL OF FUNCTIONAL ANALYSIS, 2000, 176 (02) :368-399
[4]   Lp-bounds for the Beurling-Ahlfors transform [J].
Banuelos, Rodrigo ;
Janakiraman, Prabhu .
TRANSACTIONS OF THE AMERICAN MATHEMATICAL SOCIETY, 2008, 360 (07) :3603-3612
[5]  
Begehr H, 1999, Z ANAL ANWEND, V18, P361
[6]  
BEGEHR H, 2002, ANN MAT PUR APPL, V181, P55
[7]  
Begehr H., INTEGRAL TRANSFORMS, V13, P223
[8]  
Cerejeiras P, 2001, Z ANAL ANWEND, V20, P17
[9]  
Cerejeiras P., 2000, P NATO ADV RES WORKS
[10]   Bellman function, Littlewood-Paley estimates and asymptotics for the Ahlfors-Beurling operator in Lp (C) [J].
Dragicevic, O ;
Volberg, A .
INDIANA UNIVERSITY MATHEMATICS JOURNAL, 2005, 54 (04) :971-995