ON A CLASS OF NON-LOCAL ELLIPTIC EQUATIONS WITH ASYMPTOTICALLY LINEAR TERM

被引:5
作者
Wei, Yuanhong [1 ]
Su, Xifeng [2 ]
机构
[1] Jilin Univ, Sch Math, Changchun 130012, Jilin, Peoples R China
[2] Beijing Normal Univ, Sch Math Sci, 19 XinJieKouWai St, Beijing 100875, Peoples R China
基金
中国国家自然科学基金;
关键词
Non-local operator; variational method; fractional Laplacian; multiplicity; FRACTIONAL LAPLACIAN; DISLOCATION DYNAMICS; MINIMAL-SURFACES; OBSTACLE PROBLEM; REGULARITY; OPERATORS; DIMENSION; BOUNDARY; CRYSTALS; CONCAVE;
D O I
10.3934/dcds.2018154
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
We consider the nonlinear elliptic PDE driven by the fractional Laplacian with asymptotically linear term. Some results regarding existence and multiplicity of non-trivial solutions are obtained. More precisely, information about multiple non-trivial solutions is given under some hypotheses of asymptotically linear condition; non-local elliptic equations with combined nonlinearities are also studied, and some results of local existence and global existence are obtained. Finally, an L-infinity regularity result is also given in the appendix, using the De Giorgi-Stampacchia iteration method.
引用
收藏
页码:6287 / 6304
页数:18
相关论文
共 34 条
[1]   COMBINED EFFECTS OF CONCAVE AND CONVEX NONLINEARITIES IN SOME ELLIPTIC PROBLEMS [J].
AMBROSETTI, A ;
BREZIS, H ;
CERAMI, G .
JOURNAL OF FUNCTIONAL ANALYSIS, 1994, 122 (02) :519-543
[2]   On some critical problems for the fractional Laplacian operator [J].
Barrios, B. ;
Colorado, E. ;
de Pablo, A. ;
Sanchez, U. .
JOURNAL OF DIFFERENTIAL EQUATIONS, 2012, 252 (11) :6133-6162
[3]   A concave-convex elliptic problem involving the fractional Laplacian [J].
Braendle, C. ;
Colorado, E. ;
de Pablo, A. ;
Sanchez, U. .
PROCEEDINGS OF THE ROYAL SOCIETY OF EDINBURGH SECTION A-MATHEMATICS, 2013, 143 (01) :39-71
[4]   Positive solutions of nonlinear problems involving the square root of the Laplacian [J].
Cabre, Xavier ;
Tan, Jinggang .
ADVANCES IN MATHEMATICS, 2010, 224 (05) :2052-2093
[5]   Front propagation in Fisher-KPP equations with fractional diffusion [J].
Cabre, Xavier ;
Roquejoffre, Jean-Michel .
COMPTES RENDUS MATHEMATIQUE, 2009, 347 (23-24) :1361-1366
[6]   Nonlocal Minimal Surfaces [J].
Caffarelli, L. ;
Roquejoffre, J. -M. ;
Savin, O. .
COMMUNICATIONS ON PURE AND APPLIED MATHEMATICS, 2010, 63 (09) :1111-1144
[7]   Uniform estimates and limiting arguments for nonlocal minimal surfaces [J].
Caffarelli, Luis ;
Valdinoci, Enrico .
CALCULUS OF VARIATIONS AND PARTIAL DIFFERENTIAL EQUATIONS, 2011, 41 (1-2) :203-240
[8]   Regularity estimates for the solution and the free boundary of the obstacle problem for the fractional Laplacian [J].
Caffarelli, Luis A. ;
Salsa, Sandro ;
Silvestre, Luis .
INVENTIONES MATHEMATICAE, 2008, 171 (02) :425-461
[9]   Regularity of Radial Extremal Solutions for Some Non-Local Semilinear Equations [J].
Capella, Antonio ;
Davila, Juan ;
Dupaigne, Louis ;
Sire, Yannick .
COMMUNICATIONS IN PARTIAL DIFFERENTIAL EQUATIONS, 2011, 36 (08) :1353-1384
[10]   Local "superlinearity" and "sublinearity" for the p-Laplacian [J].
de Figueiredo, Djairo G. ;
Gossez, Jean-Pierre ;
Ubilla, Pedro .
JOURNAL OF FUNCTIONAL ANALYSIS, 2009, 257 (03) :721-752