Fast Segmentation From Blurred Data in 3D Fluorescence Microscopy

被引:9
作者
Storath, Martin [1 ]
Rickert, Dennis [2 ]
Unser, Michael [3 ]
Weinmann, Andreas [2 ,4 ]
机构
[1] Heidelberg Univ, Image Anal & Learning Grp, D-69117 Heidelberg, Germany
[2] Helmholtz Zentrum Munchen, Inst Computat Biol, D-85764 Neuherberg, Germany
[3] Ecole Polytech Fed Lausanne, Biomed Imaging Grp, CH-1015 Lausanne, Switzerland
[4] Univ Appl Sci Darmstadt, Dept Math, D-64295 Darmstadt, Germany
基金
欧洲研究理事会;
关键词
Image segmentation; 3D images; Potts model; piecewise constant Mumford-Shah model; parallelization; GPU; non-negativity constraints; LEVEL-SET APPROACH; IMAGE SEGMENTATION; MUMFORD; REGULARIZATION; RESTORATION; TOMOGRAPHY; DECONVOLUTION; FUNCTIONALS; RELAXATION; COMPLEXITY;
D O I
10.1109/TIP.2017.2716843
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
We develop a fast algorithm for segmenting 3D images from linear measurements based on the Potts model (or piecewise constant Mumford-Shah model). To that end, we first derive suitable space discretizations of the 3D Potts model, which are capable of dealing with 3D images defined on non-cubic grids. Our discretization allows us to utilize a specific splitting approach, which results in decoupled subproblems of moderate size. The crucial point in the 3D setup is that the number of independent subproblems is so large that we can reasonably exploit the parallel processing capabilities of the graphics processing units (GPUs). Our GPU implementation is up to 18 times faster than the sequential CPU version. This allows to process even large volumes in acceptable runtimes. As a further contribution, we extend the algorithm in order to deal with non-negativity constraints. We demonstrate the efficiency of our method for combined image deconvolution and segmentation on simulated data and on real 3D wide field fluorescence microscopy data.
引用
收藏
页码:4856 / 4870
页数:15
相关论文
共 50 条
  • [41] Methodology for generating a 3D computerized breast phantom from empirical data
    Li, Christina M.
    Segars, W. Paul
    Tourassi, Georgia D.
    Boone, John M.
    Dobbins, James T., III
    MEDICAL PHYSICS, 2009, 36 (07) : 3122 - 3131
  • [42] 3D Dental Reconstruction from CBCT Data
    Pavaloiu, Ionel-Bujorel
    Vasilateanu, Andrei
    Goga, Nicolae
    Marin, Iuliana
    Ilie, Catalin
    Ungar, Andrei
    Patrascu, Ion
    2014 INTERNATIONAL SYMPOSIUM ON FUNDAMENTALS OF ELECTRICAL ENGINEERING (ISFEE), 2014,
  • [43] 3D Cardiac Segmentation Using Temporal Correlation of Radio Frequency Ultrasound Data
    Nillesen, Maartje M.
    Lopata, Richard G. P.
    Huisman, Henkjan J.
    Thijssen, Johan M.
    Kapusta, Livia
    de Korte, Chris L.
    MEDICAL IMAGE COMPUTING AND COMPUTER-ASSISTED INTERVENTION - MICCAI 2009, PT II, PROCEEDINGS, 2009, 5762 : 927 - +
  • [44] SEGMENTATION OF 3D CARDIAC ULTRASOUND IMAGES USING CORRELATION OF RADIO FREQUENCY DATA
    Nillesen, M. M.
    Lopata, R. G. P.
    Gerrits, I. H.
    Huisman, H. J.
    Thijssen, J. M.
    Kapusta, L.
    de Korte, C. L.
    2009 IEEE INTERNATIONAL SYMPOSIUM ON BIOMEDICAL IMAGING: FROM NANO TO MACRO, VOLS 1 AND 2, 2009, : 522 - +
  • [45] 3D Segmentation and Reconstruction of Endobronchial Ultrasound
    Zang, Xiaonan
    Breslav, Mikhail
    Higgins, William E.
    MEDICAL IMAGING 2013: ULTRASONIC IMAGING, TOMOGRAPHY, AND THERAPY, 2013, 8675
  • [46] AUTOMATIC SEGMENTATION FOR 3D DENTAL RECONSTRUCTION
    Pavaloiu, Ionel-Bujorel
    Goga, Nicolae
    Marin, Iuliana
    Vasilateanu, Andrei
    2015 6TH INTERNATIONAL CONFERENCE ON COMPUTING, COMMUNICATION AND NETWORKING TECHNOLOGIES (ICCCNT), 2015, : 216 - 221
  • [47] Miniscope3D: optimized single-shot miniature 3D fluorescence microscopy
    Yanny, Kyrollos
    Antipa, Nick
    Liberti, William
    Dehaeck, Sam
    Monakhova, Kristina
    Liu, Fanglin Linda
    Shen, Konlin
    Ng, Ren
    Waller, Laura
    LIGHT-SCIENCE & APPLICATIONS, 2020, 9 (01)
  • [48] Probabilistic model for 3D interactive segmentation
    Hershkovich, Tsachi
    Shalmon, Tamar
    Shitrit, Ohad
    Halay, Nir
    Menze, Bjoern H.
    Dolgopyat, Irit
    Kahn, Itamar
    Shelef, Ilan
    Raviv, Tammy Riklin
    COMPUTER VISION AND IMAGE UNDERSTANDING, 2016, 151 : 47 - 60
  • [49] Fast deconvolution with non-invariant PSF for 3-D fluorescence microscopy
    Maalouf, Elie
    Colicchio, Bruno
    Dieterlen, Alain
    OPTICAL AND DIGITAL IMAGE PROCESSING, 2008, 7000
  • [50] Development and evaluation of a semi-automatic 3D segmentation technique of the carotid arteries from 3D ultrasound images
    Gill, JD
    Ladak, HM
    Steinman, DA
    Fenster, A
    MEDICAL IMAGING 1999: IMAGE PROCESSING, PTS 1 AND 2, 1999, 3661 : 214 - 221