Fast Segmentation From Blurred Data in 3D Fluorescence Microscopy

被引:9
作者
Storath, Martin [1 ]
Rickert, Dennis [2 ]
Unser, Michael [3 ]
Weinmann, Andreas [2 ,4 ]
机构
[1] Heidelberg Univ, Image Anal & Learning Grp, D-69117 Heidelberg, Germany
[2] Helmholtz Zentrum Munchen, Inst Computat Biol, D-85764 Neuherberg, Germany
[3] Ecole Polytech Fed Lausanne, Biomed Imaging Grp, CH-1015 Lausanne, Switzerland
[4] Univ Appl Sci Darmstadt, Dept Math, D-64295 Darmstadt, Germany
基金
欧洲研究理事会;
关键词
Image segmentation; 3D images; Potts model; piecewise constant Mumford-Shah model; parallelization; GPU; non-negativity constraints; LEVEL-SET APPROACH; IMAGE SEGMENTATION; MUMFORD; REGULARIZATION; RESTORATION; TOMOGRAPHY; DECONVOLUTION; FUNCTIONALS; RELAXATION; COMPLEXITY;
D O I
10.1109/TIP.2017.2716843
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
We develop a fast algorithm for segmenting 3D images from linear measurements based on the Potts model (or piecewise constant Mumford-Shah model). To that end, we first derive suitable space discretizations of the 3D Potts model, which are capable of dealing with 3D images defined on non-cubic grids. Our discretization allows us to utilize a specific splitting approach, which results in decoupled subproblems of moderate size. The crucial point in the 3D setup is that the number of independent subproblems is so large that we can reasonably exploit the parallel processing capabilities of the graphics processing units (GPUs). Our GPU implementation is up to 18 times faster than the sequential CPU version. This allows to process even large volumes in acceptable runtimes. As a further contribution, we extend the algorithm in order to deal with non-negativity constraints. We demonstrate the efficiency of our method for combined image deconvolution and segmentation on simulated data and on real 3D wide field fluorescence microscopy data.
引用
收藏
页码:4856 / 4870
页数:15
相关论文
共 50 条
  • [1] Reconstruction From Multiple Particles for 3D Isotropic Resolution in Fluorescence Microscopy
    Fortun, Denis
    Guichard, Paul
    Hamel, Virginie
    Sorzano, Carlos Oscar S.
    Banterle, Niccolo
    Gonczy, Pierre
    Unser, Michael
    IEEE TRANSACTIONS ON MEDICAL IMAGING, 2018, 37 (05) : 1235 - 1246
  • [2] Knowledge Based Segmentation for Fast 3D Dental Reconstruction from CBCT
    Pavaloiu, Ionel-Bujorel
    Vasilateanu, Andrei
    Goga, Nicolae
    Marin, Iuliana
    Ioanitescu, Radu
    Dorobantu, Alin-Anghel
    Ilie, Catalin
    Blaga, Marcel
    Ungar, Andrei
    Patrascu, Ion
    2015 20TH INTERNATIONAL CONFERENCE ON CONTROL SYSTEMS AND COMPUTER SCIENCE, 2015, : 397 - 401
  • [3] SPITFIR(e): a supermaneuverable algorithm for fast denoising and deconvolution of 3D fluorescence microscopy images and videos
    Prigent, Sylvain
    Nguyen, Hoai-Nam
    Leconte, Ludovic
    Valades-Cruz, Cesar Augusto
    Hajj, Bassam
    Salamero, Jean
    Kervrann, Charles
    SCIENTIFIC REPORTS, 2023, 13 (01):
  • [4] Application of the split-gradient method to 3D image deconvolution in fluorescence microscopy
    Vicidomini, G.
    Boccacci, P.
    Diaspro, A.
    Bertero, M.
    JOURNAL OF MICROSCOPY, 2009, 234 (01) : 47 - 61
  • [5] Research on segmentation algorithm of 3d medical data
    Wang, YH
    Peng, YJ
    Shi, JY
    PROCEEDINGS OF THE 11TH JOINT INTERNATIONAL COMPUTER CONFERENCE, 2005, : 976 - 979
  • [6] 3D VISUALIZATION AND SEGMENTATION OF BRAIN MRI DATA
    Levinski, Konstantin
    Sourin, Alexei
    Zagorodnov, Vitali
    GRAPP 2009: PROCEEDINGS OF THE FOURTH INTERNATIONAL CONFERENCE ON COMPUTER GRAPHICS THEORY AND APPLICATIONS, 2009, : 111 - +
  • [7] A Detector-Independent Quality Score for Cell Segmentation Without Ground Truth in 3D Live Fluorescence Microscopy
    Vanaret, Jules
    Dupuis, Victoria
    Lenne, Pierre-Francois
    Richard, Frederic
    Tlili, Sham
    Roudot, Philippe
    IEEE JOURNAL OF SELECTED TOPICS IN QUANTUM ELECTRONICS, 2023, 29 (04)
  • [8] A modular hierarchical approach to 3D electron microscopy image segmentation
    Liu, Ting
    Jones, Cory
    Seyedhosseini, Mojtaba
    Tasdizen, Tolga
    JOURNAL OF NEUROSCIENCE METHODS, 2014, 226 : 88 - 102
  • [9] PURE-LET DECONVOLUTION OF 3D FLUORESCENCE MICROSCOPY IMAGES
    Li, Jizhou
    Luisier, Florian
    Blu, Thierry
    2017 IEEE 14TH INTERNATIONAL SYMPOSIUM ON BIOMEDICAL IMAGING (ISBI 2017), 2017, : 723 - 727
  • [10] A fast automatic method for 3D volume segmentation of the human cerebrovascular
    Sabry, M
    Sites, CB
    Farag, AA
    Hushek, S
    Moriarty, T
    CARS 2002: COMPUTER ASSISTED RADIOLOGY AND SURGERY, PROCEEDINGS, 2002, : 382 - 387