Emotion recognition using eigenvalues and Levenberg-Marquardt algorithm-based classifier

被引:15
|
作者
Gaidhane, Vilas H. [1 ]
Hote, Yogesh V. [2 ]
Singh, Vijander [3 ]
机构
[1] Dubai Int Acad City, BITS Pilani, Dept Elect & Elect Engn, Dubai Campus, Dubai 34505, U Arab Emirates
[2] Indian Inst Technol Roorkee, Dept Elect Engn, Roorkee 247667, Uttar Pradesh, India
[3] Univ Delhi, Netaji Subhas Inst Technol, Dept Instrumentat & Control Engn, New Delhi 110078, India
关键词
Emotion recognition; eigenvalue; Levenberg-Marquardt algorithm; neural network; classification; FACIAL EXPRESSION RECOGNITION; AUTOMATIC-ANALYSIS; SEQUENCES;
D O I
10.1007/s12046-016-0479-6
中图分类号
T [工业技术];
学科分类号
08 ;
摘要
In this paper, a simple and computationally efficient approach is proposed for person independent facial emotion recognition. The proposed approach is based on the significant features of an image, i.e., the collection of few largest eigenvalues (LE). Further, a Levenberg-Marquardt algorithm-based neural network (LMNN) is applied for multiclass emotions classification. This leads to a new facial emotion recognition approach (LE-LMNN) which is systematically examined on JAFFE and Cohn-Kanade databases. Experimental results illustrate that the LE-LMNN approach is effective and computationally efficient for facial emotion recognition. The robustness of the proposed approach is also tested on low-resolution facial emotion images. The performance of the proposed approach is found to be superior as compared to the various existing methods.
引用
收藏
页码:415 / 423
页数:9
相关论文
共 50 条
  • [1] Emotion recognition using eigenvalues and Levenberg–Marquardt algorithm-based classifier
    Vilas H Gaidhane
    Yogesh V Hote
    Vijander Singh
    Sādhanā, 2016, 41 : 415 - 423
  • [2] Speech Recognition Using ARMA Model and Levenberg-Marquardt Algorithm
    Jafari, Reza
    Jafari, Amir H.
    INTELLIGENT SYSTEMS AND APPLICATIONS, VOL 4, INTELLISYS 2024, 2024, 1068 : 351 - 367
  • [3] A Parallel Levenberg-Marquardt Algorithm
    Cao, Jun
    Novstrup, Krista A.
    Goyal, Ayush
    Midkiff, Samuel R.
    Caruthers, James M.
    ICS'09: PROCEEDINGS OF THE 2009 ACM SIGARCH INTERNATIONAL CONFERENCE ON SUPERCOMPUTING, 2009, : 450 - 459
  • [4] Distributed localization using Levenberg-Marquardt algorithm
    Shervin Parvini Ahmadi
    Anders Hansson
    Sina Khoshfetrat Pakazad
    EURASIP Journal on Advances in Signal Processing, 2021
  • [5] Distributed localization using Levenberg-Marquardt algorithm
    Ahmadi, Shervin Parvini
    Hansson, Anders
    Pakazad, Sina Khoshfetrat
    EURASIP JOURNAL ON ADVANCES IN SIGNAL PROCESSING, 2021, 2021 (01)
  • [6] Adaptive Levenberg-Marquardt Algorithm: A New Optimization Strategy for Levenberg-Marquardt Neural Networks
    Yan, Zhiqi
    Zhong, Shisheng
    Lin, Lin
    Cui, Zhiquan
    MATHEMATICS, 2021, 9 (17)
  • [7] Improvement of magnetometer calibration using Levenberg-Marquardt algorithm
    Pang, Hongfeng
    Chen, Dixiang
    Pan, Mengchun
    Luo, Shitu
    Zhang, Qi
    Li, Ji
    Luo, Feilu
    IEEJ TRANSACTIONS ON ELECTRICAL AND ELECTRONIC ENGINEERING, 2014, 9 (03) : 324 - 328
  • [8] The Parallel Modification to the Levenberg-Marquardt Algorithm
    Bilski, Jaroslaw
    Kowalczyk, Bartosz
    Grzanek, Konrad
    ARTIFICIAL INTELLIGENCE AND SOFT COMPUTING, ICAISC 2018, PT I, 2018, 10841 : 15 - 24
  • [9] Distributed model calibration using Levenberg-Marquardt algorithm
    Lu, Mark
    Zhu, Liang
    Ling, Li
    Zhangb, Gary
    Chan, Walter
    Zhou, Xin
    OPTICAL MICROLITHOGRAPHY XX, PTS 1-3, 2007, 6520
  • [10] Radar Target Detection by Using Levenberg-Marquardt Algorithm
    Nasret, Ali Najdet
    Kamal, Ayoub Esam
    Mahmood, Zuhiar Shakor
    PRZEGLAD ELEKTROTECHNICZNY, 2023, 99 (03): : 265 - 270