Evidence of transcranial direct current stimulation-generated electric fields at subthalamic level in human brain in vivo

被引:78
作者
Chhatbar, Pratik Y. [1 ]
Kautz, Steven A. [2 ,3 ]
Takacs, Istvan [4 ]
Rowland, Nathan C. [4 ]
Revuelta, Gonzalo J. [1 ]
George, Mark S. [3 ,5 ]
Bikson, Marom [6 ]
Feng, Wuwei [1 ,2 ]
机构
[1] Med Univ South Carolina, Dept Neurol, Coll Med, Charleston, SC 29425 USA
[2] Med Univ South Carolina, Coll Hlth Profess, Dept Hlth Sci & Res, Charleston, SC 29425 USA
[3] Ralph H Johnson VA Med Ctr, Charleston, SC USA
[4] Med Univ South Carolina, Dept Neurosurg, Coll Med, Charleston, SC 29425 USA
[5] Med Univ South Carolina, Brain Stimulat Lab, Dept Psychiat & Behav Sci, Coll Med, Charleston, SC 29425 USA
[6] CUNY City Coll, Dept Biomed Engn, New York, NY 10031 USA
基金
美国国家卫生研究院;
关键词
Deep brain stimulation; Transcranial direct current stimulation; Body resistance; Dose-dependence; Voltage-current relationship; FINITE-ELEMENT; ANISOTROPY;
D O I
10.1016/j.brs.2018.03.006
中图分类号
R74 [神经病学与精神病学];
学科分类号
摘要
Background: Transcranial direct current stimulation (tDCS) is a promising brain modulation technique for several disease conditions. With this technique, some portion of the current penetrates through the scalp to the cortex and modulates cortical excitability, but a recent human cadaver study questions the amount. This insufficient intracerebral penetration of currents may partially explain the inconsistent and mixed results in tDCS studies to date. Experimental validation of a transcranial alternating current stimulation-generated electric field (EF) in vivo has been performed on the cortical (using electrocorticography, ECoG, electrodes), subcortical (using stereo electroencephalography, SEEG, electrodes) and deeper thalamic/subthalamic levels (using DBS electrodes). However, tDCS-generated EF measurements have never been attempted. Objective: We aimed to demonstrate that tDCS generates biologically relevant EF as deep as the subthalamic level in vivo. Methods: Patients with movement disorders who have implanted deep brain stimulation (DBS) electrodes serve as a natural experimental model for thalamic/subthalamic recordings of tDCS-generated EF. We measured voltage changes from DBS electrodes and body resistance from tDCS electrodes in three subjects while applying direct current to the scalp at 2 mA and 4 mA over two tDCS montages. Results: Voltage changes at the level of deep nuclei changed proportionally with the level of applied current and varied with different tDCS montages. Conclusions: Our findings suggest that scalp-applied tDCS generates biologically relevant EF. Incorporation of these experimental results may improve finite element analysis (FEA)-based models. (C) 2018 Elsevier Inc. All rights reserved.
引用
收藏
页码:727 / 733
页数:7
相关论文
共 17 条
[1]   BLACK AND WHITE HUMAN-SKIN DIFFERENCES [J].
ANDERSEN, KE ;
MAIBACH, HI .
JOURNAL OF THE AMERICAN ACADEMY OF DERMATOLOGY, 1979, 1 (03) :276-282
[2]   Safety and tolerability of transcranial direct current stimulation to stroke patients - A phase I current escalation study [J].
Chhatbar, Pratik Y. ;
Chen, Rong ;
Deardorff, Rachael ;
Dellenbach, Blair ;
Kautz, Steven A. ;
George, Mark S. ;
Feng, Wuwei .
BRAIN STIMULATION, 2017, 10 (03) :553-559
[3]   Gyri-precise head model of transcranial direct current stimulation: Improved spatial focality using a ring electrode versus conventional rectangular pad [J].
Datta, Abhishek ;
Bansal, Varun ;
Diaz, Julian ;
Patel, Jinal ;
Reato, Davide ;
Bikson, Marom .
BRAIN STIMULATION, 2009, 2 (04) :201-207
[4]   Methods for extra-low voltage transcranial direct current stimulation: Current and time dependent impedance decreases [J].
Hahn, Christoph ;
Rice, Justin ;
Macuff, Shiraz ;
Minhas, Preet ;
Rahman, Asif ;
Bikson, Marom .
CLINICAL NEUROPHYSIOLOGY, 2013, 124 (03) :551-556
[5]  
Huang Y., 2017, Elife, V6
[6]  
Lee WH, 2009, IFMBE PROC, V23, P460
[7]   Evidence-based guidelines on the therapeutic use of transcranial direct current stimulation (tDCS) [J].
Lefaucheur, Jean-Pascal ;
Antal, Andrea ;
Ayache, Samar S. ;
Benninger, David H. ;
Brunelin, Jerome ;
Cogiamanian, Filippo ;
Cotelli, Maria ;
De Ridder, Dirk ;
Ferrucci, Roberta ;
Langguth, Berthold ;
Marangolo, Paola ;
Mylius, Veit ;
Nitsche, Michael A. ;
Padberg, Frank ;
Palm, Ulrich ;
Poulet, Emmanuel ;
Priori, Alberto ;
Rossi, Simone ;
Schecklmann, Martin ;
Vanneste, Sven ;
Ziemann, Ulf ;
Garcia-Larrea, Luis ;
Paulus, Walter .
CLINICAL NEUROPHYSIOLOGY, 2017, 128 (01) :56-92
[8]   Spatiotemporal structure of intracranial electric fields induced by transcranial electric stimulation in humans and nonhuman primates [J].
Opitz, Alexander ;
Falchier, Arnaud ;
Yan, Chao-Gan ;
Yeagle, Erin M. ;
Linn, Gary S. ;
Megevand, Pierre ;
Thielscher, Axel ;
Ross, Deborah A. ;
Milham, Michael P. ;
Mehta, Ashesh D. ;
Schroeder, Charles E. .
SCIENTIFIC REPORTS, 2016, 6
[9]  
ROSENDAL T., 1943, Acta Physiol. Scand, V5, P130, DOI DOI 10.1111/J.1748-1716.1943.TB02040.X
[10]   Sailing in a sea of disbelief: In vivo measurements of transcranial electric stimulation in human subcortical structures [J].
Ruhnau, P. ;
Rufener, K. S. ;
Heinze, H. -J. ;
Zaehle, T. .
BRAIN STIMULATION, 2018, 11 (01) :241-243