CRISPR-Act3.0 for highly efficient multiplexed gene activation in plants

被引:127
作者
Pan, Changtian [1 ]
Wu, Xincheng [1 ]
Markel, Kasey [2 ]
Malzahn, Aimee A. [1 ]
Kundagrami, Neil [1 ]
Sretenovic, Simon [1 ]
Zhang, Yingxiao [1 ]
Cheng, Yanhao [1 ]
Shih, Patrick M. [2 ,3 ,4 ,5 ,6 ]
Qi, Yiping [1 ,7 ]
机构
[1] Univ Maryland, Dept Plant Sci & Landscape Architecture, College Pk, MD 20742 USA
[2] Univ Calif Davis, Dept Plant Biol, Davis, CA 95616 USA
[3] Lawrence Berkeley Natl Lab, Environm Genom & Syst Biol Div, Berkeley, CA USA
[4] Joint BioEnergy Inst, Feedstocks Div, Emeryville, CA USA
[5] Univ Calif Berkeley, Dept Plant & Microbial Biol, Berkeley, CA 94720 USA
[6] Univ Calif Berkeley, Innovat Genom Inst, Berkeley, CA 94720 USA
[7] Univ Maryland, Inst Biosci & Biotechnol Res, Rockville, MD 20850 USA
基金
美国国家科学基金会;
关键词
TRANSCRIPTIONAL ACTIVATION; TRANSFER-RNA; GUIDE-RNA; GENOME; TRANSFORMATION; ARABIDOPSIS; REPRESSION; REGULATORS; INDUCTION; SYSTEM;
D O I
10.1038/s41477-021-00953-7
中图分类号
Q94 [植物学];
学科分类号
071001 ;
摘要
RNA-guided CRISPR activation (CRISPRa) systems have been developed in plants. However, the simultaneous activation of multiple genes remains challenging. Here, we develop a highly robust CRISPRa system working in rice, Arabidopsis and tomato, CRISPR-Act3.0, through systematically exploring different effector recruitment strategies and various transcription activators based on deactivated Streptococcus pyogenes Cas9 (dSpCas9). The CRISPR-Act3.0 system results in fourfold to sixfold higher activation than the state-of-the-art CRISPRa systems. We further develop a tRNA-gR2.0 (single guide RNA 2.0) expression system enabling CRISPR-Act3.0-based robust activation of up to seven genes for metabolic engineering in rice. In addition, CRISPR-Act3.0 allows the simultaneous modification of multiple traits in Arabidopsis, which are stably transmitted to the T3 generations. On the basis of CRISPR-Act3.0, we elucidate guide RNA targeting rules for effective transcriptional activation. To target T-rich protospacer adjacent motifs (PAMs), we transfer this activation strategy to CRISPR-dCas12b and further improve the dAaCas12b-based CRISPRa system. Moreover, we develop a potent near-PAM-less CRISPR-Act3.0 system on the basis of the SpRY dCas9 variant, which outperforms the dCas9-NG system in both activation potency and targeting scope. Altogether, our study has substantially improved the CRISPRa technology in plants and provided plant researchers a powerful toolbox for efficient gene activation in foundational and translational research.
引用
收藏
页码:942 / 953
页数:12
相关论文
共 60 条
[1]  
Chavez A, 2015, NAT METHODS, V12, P326, DOI [10.1038/NMETH.3312, 10.1038/nmeth.3312]
[2]   CRISPR/Cas Genome Editing and Precision Plant Breeding in Agriculture [J].
Chen, Kunling ;
Wang, Yanpeng ;
Zhang, Rui ;
Zhang, Huawei ;
Gao, Caixia .
ANNUAL REVIEW OF PLANT BIOLOGY, VOL 70, 2019, 70 :667-697
[3]   Floral dip:: a simplified method for Agrobacterium-mediated transformation of Arabidopsis thaliana [J].
Clough, SJ ;
Bent, AF .
PLANT JOURNAL, 1998, 16 (06) :735-743
[4]   Variation of gene expression in plants is influenced by gene architecture and structural properties of promoters [J].
Das, Sanjukta ;
Bansal, Manju .
PLOS ONE, 2019, 14 (03)
[5]   Synthetic CRISPR-Cas gene activators for transcriptional reprogramming in bacteria [J].
Dong, Chen ;
Fontana, Jason ;
Patel, Anika ;
Carothers, James M. ;
Zalatan, Jesse G. .
NATURE COMMUNICATIONS, 2018, 9
[6]   Polycistronic tRNA and CRISPR guide-RNA enables highly efficient multiplexed genome engineering in human cells [J].
Dong, Fengping ;
Xie, Kabin ;
Chen, Yueying ;
Yang, Yinong ;
Mao, Yingwei .
BIOCHEMICAL AND BIOPHYSICAL RESEARCH COMMUNICATIONS, 2017, 482 (04) :889-895
[7]   Genome editing in plants by engineered CRISPR-Cas9 recognizing NG PAM [J].
Endo, Masaki ;
Mikami, Masafumi ;
Endo, Akira ;
Kaya, Hidetaka ;
Itoh, Takeshi ;
Nishimasu, Hiroshi ;
Nureki, Osamu ;
Toki, Seiichi .
NATURE PLANTS, 2019, 5 (01) :14-17
[8]   Engineered xCas9 and SpCas9-NG variants broaden PAM recognition sites to generate mutations in Arabidopsis plants [J].
Ge, Zengxiang ;
Zheng, Leiqi ;
Zhao, Yuling ;
Jiang, Jiahao ;
Zhang, Emily J. ;
Liu, Tianxu ;
Gu, Hongya ;
Qu, Li-Jia .
PLANT BIOTECHNOLOGY JOURNAL, 2019, 17 (10) :1865-1867
[9]   Genome-Scale CRISPR-Mediated Control of Gene Repression and Activation [J].
Gilbert, Luke A. ;
Horlbeck, Max A. ;
Adamson, Britt ;
Villalta, Jacqueline E. ;
Chen, Yuwen ;
Whitehead, Evan H. ;
Guimaraes, Carla ;
Panning, Barbara ;
Ploegh, Hidde L. ;
Bassik, Michael C. ;
Qi, Lei S. ;
Kampmann, Martin ;
Weissman, Jonathan S. .
CELL, 2014, 159 (03) :647-661
[10]   Positional effects on efficiency of CRISPR/Cas9-based transcriptional activation in rice plants [J].
Gong, Xiaoyu ;
Zhang, Tao ;
Xing, Jialing ;
Wang, Rongchen ;
Zhao, Yunde .
ABIOTECH, 2020, 1 (01) :1-5