Gaussian fluctuations of the determinant of Wigner matrices

被引:16
作者
Bourgade, Paul [1 ]
Mody, Krishnan [1 ]
机构
[1] NYU, New York, NY 10003 USA
来源
ELECTRONIC JOURNAL OF PROBABILITY | 2019年 / 24卷
基金
美国国家科学基金会;
关键词
random matrices; determinant; central limit theorem; FIXED-ENERGY UNIVERSALITY; CENTRAL-LIMIT-THEOREM; BULK UNIVERSALITY; MAXIMUM; LAW; SINGULARITY; PROBABILITY; EIGENVALUES;
D O I
10.1214/19-EJP356
中图分类号
O21 [概率论与数理统计]; C8 [统计学];
学科分类号
020208 ; 070103 ; 0714 ;
摘要
We prove that the logarithm of the determinant of a Wigner matrix satisfies a central limit theorem in the limit of large dimension. Previous results about fluctuations of such determinants required that the first four moments of the matrix entries match those of a Gaussian [53]. Our work treats symmetric and Hermitian matrices with centered entries having the same variance and subgaussian tail. In particular, it applies to symmetric Bernoulli matrices and answers an open problem raised in [54]. The method relies on (1) the observable introduced in [9] and the stochastic advection equation it satisfies, (2) strong estimates on the Green function as in [12], (3) fixed energy universality [10], (4) a moment matching argument [52] using Green's function comparison [21].
引用
收藏
页数:28
相关论文
共 56 条
  • [1] Anderson Greg W., 2010, CAMBRIDGE STUDIES AD, V118
  • [2] [Anonymous], 1968, Studia Sci. Math. Hungar., V3, P387
  • [3] Arguin L.-P., 2017, ADV DISORDERED SYSTE, P166
  • [4] Maximum of the Characteristic Polynomial of Random Unitary Matrices
    Arguin, Louis-Pierre
    Belius, David
    Bourgade, Paul
    [J]. COMMUNICATIONS IN MATHEMATICAL PHYSICS, 2017, 349 (02) : 703 - 751
  • [5] Random matrices and complexity of spin glasses
    Auffinger, Antonio
    Ben Arous, Gerard
    Cerny, Jiri
    [J]. COMMUNICATIONS ON PURE AND APPLIED MATHEMATICS, 2013, 66 (02) : 165 - 201
  • [6] The logarithmic law of random determinant
    Bao, Zhigang
    Pan, Guangming
    Zhou, Wang
    [J]. BERNOULLI, 2015, 21 (03) : 1600 - 1628
  • [7] Random Hermitian matrices and Gaussian multiplicative chaos
    Berestycki, Nathanael
    Webb, Christian
    Wong, Mo Dick
    [J]. PROBABILITY THEORY AND RELATED FIELDS, 2018, 172 (1-2) : 103 - 189
  • [8] The singular values of the GOE
    Bornemann, Folkmar
    La Croix, Michael
    [J]. RANDOM MATRICES-THEORY AND APPLICATIONS, 2015, 4 (02)
  • [9] Mesoscopic fluctuations of the zeta zeros
    Bourgade, P.
    [J]. PROBABILITY THEORY AND RELATED FIELDS, 2010, 148 (3-4) : 479 - 500
  • [10] Fixed Energy Universality for Generalized Wigner Matrices
    Bourgade, Paul
    Erdos, Laszlo
    Yau, Horng-Tzer
    Yin, Jun
    [J]. COMMUNICATIONS ON PURE AND APPLIED MATHEMATICS, 2016, 69 (10) : 1815 - 1881