Universal route to thermalization in weakly-nonlinear one-dimensional chains

被引:32
作者
Pistone, Lorenzo [1 ]
Chibbaro, Sergio [2 ]
Bustamante, Miguel D. [3 ]
Lvov, Yuri, V [4 ]
Onorato, Miguel [1 ,5 ]
机构
[1] Univ Torino, Dipartimento Fis, Via Pietro Giuria 1, I-10125 Turin, Italy
[2] Sorbonne Univ, CNRS, Inst Jean Le Rond DAlembert, F-75005 Paris, France
[3] Univ Coll Dublin, Sch Math & Stat, Dublin 4, Ireland
[4] Rensselaer Polytech Inst, Dept Math Sci, Troy, NY 12180 USA
[5] Ist Nazl Fis Nucl, Sez Torino, Via P Giuria 1, I-10125 Turin, Italy
来源
MATHEMATICS IN ENGINEERING | 2019年 / 1卷 / 04期
关键词
FPUT; Klein-Gordon; nonlinear interactions; Wave Turbulence; thermalization; WAVE; EQUIPARTITION; SURFACE; TIMES;
D O I
10.3934/mine.2019.4.672
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
Assuming that resonances play a major role in the transfer of energy among the Fourier modes, we apply the Wave Turbulence theory to describe the dynamics on nonlinear one-dimensional chains. We consider alpha and beta Fermi-Pasta-Ulam-Tsingou (FPUT) systems, and the discrete nonlinear Klein-Gordon chain. We consider both the thermodynamic limit and the discrete regime and we conjecture that all the systems thermalize for large times, and that the equipartition time scales as a power-law of the strength of the nonlinearity, at least for a range of values of the nonlinear parameter. We perform state of the art numerical simulations and show that the results are mostly consistent with theoretical predictions. Some observed discrepancies are discussed. We suggest that the route to thermalization, based on the presence of exact resonance, has universal features. Moreover, a by-product of our analysis is the asymptotic integrability, up to four wave interactions, of the discrete nonlinear Klein-Gordon chain.
引用
收藏
页码:672 / 698
页数:27
相关论文
共 49 条
[1]  
[Anonymous], 2018, ARXIV181105697
[2]  
[Anonymous], 1992, KOLMOGOROV SPECTRA T
[3]  
[Anonymous], ARXIV190104245
[4]  
[Anonymous], 2004, INTERACTION OCEAN WA
[5]  
[Anonymous], ARXIV12042793
[6]  
[Anonymous], 1991, Springer Series in Nonlinear Dynamics
[7]  
Arnold V. I., 1963, Russian Math. Surveys, V18, P85, DOI [DOI 10.1070/RM1963V018N06ABEH001143, 10.1070/RM1963v018n06ABEH001143]
[8]   The Fermi-Pasta-Ulam Problem and Its Underlying Integrable Dynamics [J].
Benettin, G. ;
Christodoulidi, H. ;
Ponno, A. .
JOURNAL OF STATISTICAL PHYSICS, 2013, 152 (02) :195-212
[9]   Time-Scales to Equipartition in the Fermi-Pasta-Ulam Problem: Finite-Size Effects and Thermodynamic Limit [J].
Benettin, G. ;
Ponno, A. .
JOURNAL OF STATISTICAL PHYSICS, 2011, 144 (04) :793-812
[10]   The Fermi-Pasta-Ulam Problem: Scaling Laws vs. Initial Conditions [J].
Benettin, G. ;
Livi, R. ;
Ponno, A. .
JOURNAL OF STATISTICAL PHYSICS, 2009, 135 (5-6) :873-893